Skip to main content
Log in

A general probabilistic solution of randomized radioactive decay chain (RDC) model using RVT technique

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This article develops a complete solution of the randomized nuclear radioactive decay chain model based on Bateman master equations. A multidimensional version of the random variable transformation technique is adapted to derive a full probabilistic description for this model. To present general and more realistic physical situation, the initial number of the parent radionuclides and the decay parameters are considered to be random variables. The first probability density functions for the solution processes and the time until a given number of parent radionuclides remains in its state before decaying are constructed and used to calculate the mean, the variance and the confidence intervals. To test the efficiency of the theoretical findings, some numerical results are graphically presented and found to be consistent with the observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. E. Segrè, Nuclei, and Particles, 2nd edn. (Benjamin/Cummings, Reading, 1977)

    Google Scholar 

  2. H. Bateman, Solution of a system of differential equations occurring in the theory of radioactive transformation. Proc. Camb. Philos. Soc. 15, 423–427 (1910)

    MATH  Google Scholar 

  3. M.C. Casabán, J.C. Cortés, J.V. Romero, M.-D. Roselló, Mediterr. J. Math. 13, 3817 (2016). https://doi.org/10.1007/s00009-016-0716-6

    Article  MathSciNet  Google Scholar 

  4. M.C. Casabán, J.C. Cortés, J.V. Romero, M.D. Roselló, Abstract, and Applied Analysis (Hindawi Publishing Corporation, London, 2016). https://doi.org/10.1155/2016/6372108

    Book  Google Scholar 

  5. M.C. Casabán, J.C. Cortés, J.V. Romero, M.-D. Roselló, Abstract, and Applied Analysis, vol. 2014 (Hindawi Publishing Corporation, London, 2016), p. 248512. https://doi.org/10.1155/2014/248512

    Book  Google Scholar 

  6. M.C. Casabán, J.C. Cortés, J.V. Romero, M.-D. Roselló, Appl. Math. Lett. 34, 27 (2014). https://doi.org/10.1016/j.aml.2014.03.010

    Article  MathSciNet  Google Scholar 

  7. A. Hussein, M.M. Selim, Eur. Phys. J. Plus. 130, 249 (2015). https://doi.org/10.1140/epjp/i2015-15249-3

    Article  Google Scholar 

  8. A. Hussein, M.M. Selim, Appl. Math. Comput. 218, 7193 (2012). https://doi.org/10.1016/j.amc.2011.12.088

    Article  MathSciNet  Google Scholar 

  9. A. Hussein, M.M. Selim, Appl. Math. Comput. 213, 250 (2009). https://doi.org/10.1016/j.amc.2009.03.016

    Article  MathSciNet  Google Scholar 

  10. A. Hussein, M.M. Selim, Appl. Math. Comput. 216, 2910 (2010). https://doi.org/10.1016/j.amc.2010.04.003

    Article  MathSciNet  Google Scholar 

  11. H. Slama, N.A. El-Bedwhey, A. El-Depsy, M.M. Selim, Eur. Phys. J. Plus. 132, 505 (2017). https://doi.org/10.1140/epjp/i2017-11763-6

    Article  Google Scholar 

  12. A. Hussein, M.M. Selim, J. Quant. Spect. Radiat. Transf. 232, 54 (2019). https://doi.org/10.1016/j.jqsrt.2019.04.034

    Article  ADS  Google Scholar 

  13. M.C. Casabán, J.C. Cortés, J.V. Romero, M.-D. Roselló, Commun. Nonlinear Sci. Numer. Simulat. 32, 199 (2016). https://doi.org/10.1016/j.cnsns.2015.08.009

    Article  ADS  Google Scholar 

  14. M.C. Casabán, J.C. Cortés, J.V. Romero, M.-D. Roselló, Commun. Nonlinear Sci. Numer. Simulat. 24, 86 (2015). https://doi.org/10.1016/j.cnsns.2014.12.016

    Article  ADS  Google Scholar 

  15. H. Slama, A. Hussein, N.A. El-Bedwhey, M.M. Selim, Appl. Math. Comput. 361, 144 (2019). https://doi.org/10.1140/epjp/i2017-11763-6

    Article  MathSciNet  Google Scholar 

  16. R. Walpole, R. Myers, S. Myers, Probability and Statistics for Engineers and Scientists, vol. 7, 9th edn. (Prentice-Hall, Upper Saddle River, 2012), pp. 211–217

    MATH  Google Scholar 

  17. A. Papoulis, Probability, Random Variables and Stochastic Processes, vol. 5, 4th edn. (McGraw-Hill, Boston, 2002), pp. 123–138

    Google Scholar 

  18. W. Jack Rinka, L.M. Heamanb, Radioactive Decay Constants: A Review, Encyclopedia of Scientific Dating Methods (Springer, Dordrecht, 2014). https://doi.org/10.1007/978-94-007-6326-5_264-1

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Selim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussein, A., Selim, M.M. A general probabilistic solution of randomized radioactive decay chain (RDC) model using RVT technique. Eur. Phys. J. Plus 135, 418 (2020). https://doi.org/10.1140/epjp/s13360-020-00389-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00389-6

Navigation