Skip to main content
Log in

Terahertz radiation emission from three-color laser-induced air plasma

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Based on the photocurrent model, terahertz (THz) radiation generation in three-color (fundamental (\(\omega \)), second-harmonic (\(2\omega \)), and third-harmonic (\(3\omega \))) laser-induced air plasma is studied using particle in cell simulation. Our simulation results show that the amplitude of THz radiation in the three-color laser scheme is several times larger than the amplitude of THz radiation in the two-color laser scheme (fundamental (\(\omega \)), second harmonic (\(2\omega \))). In addition, the effect of the phase difference between the first and second harmonics \(\left( \varphi _{2} \right) \) and the phase difference between the fundamental and third harmonics \(\left( \varphi _{3} \right) \) on THz generation is investigated in order to obtain the optimum conditions. It is indicated that the effect of \(\varphi _{3}\) on THz radiation strongly depends on \(\varphi _{2}\) in the three-color scheme and it is found that the THz radiation is maximum in the case with \(\varphi _{2}=\pi / 6\) and \(\varphi _{3}= \pi / 6\). The influence of laser wavelength and pulse duration on THz generation is also studied. Our results reveal that the THz radiation increases proportionally to the square of the laser wavelength. Moreover, it is shown that THz radiation increases by increasing pulse duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M. Hangyo, M. Tani, T. Nagashima, Int. J. Infrared Millim. Waves 26, 1661 (2005)

    Article  ADS  Google Scholar 

  2. M. Scheller, J. Infrared Millim. Terahertz Waves 35, 638 (2014)

    Article  Google Scholar 

  3. P.H. Siegel, IEEE Trans. Microw. Theory Tech. 50, 910 (2002)

    Article  ADS  Google Scholar 

  4. K. Tanaka, H. Hirori, M. Nagai, IEEE Trans. Terahertz Sci. Technol. 1, 301 (2011)

    Article  ADS  Google Scholar 

  5. J.-H. Son, Terahertz Biomedical Science and Technology (CRC Press, Boca Raton, 2014)

    Book  Google Scholar 

  6. H. Hafez et al., J. Opt. 18, 093004 (2016)

    Article  ADS  Google Scholar 

  7. M. Tonouchi, Nat. Photonics 1, 97 (2007)

    Article  ADS  Google Scholar 

  8. B. Ferguson, X.-C. Zhang, Nat. Mater. 1, 26 (2002)

    Article  ADS  Google Scholar 

  9. D.H. Auston et al., Phys. Rev. Lett. 53, 1555 (1984)

    Article  ADS  Google Scholar 

  10. A. Rice et al., Appl. Phys. Lett. 64, 1324 (1994)

    Article  ADS  Google Scholar 

  11. D. Cook, R. Hochstrasser, Opt. Lett. 25, 1210 (2000)

    Article  ADS  Google Scholar 

  12. T. Bartel et al., Opt. Lett. 30, 2805 (2005)

    Article  ADS  Google Scholar 

  13. N. Karpowicz et al., Appl. Phys. Lett. 92, 011131 (2008)

    Article  ADS  Google Scholar 

  14. H. Hamster et al., Phys. Rev. Lett. 71, 2725 (1993)

    Article  ADS  Google Scholar 

  15. K.-Y. Kim et al., Opt. Express 15, 4577 (2007)

    Article  ADS  Google Scholar 

  16. H. Alirezaee, M. Sharifian, Phys. Plasmas 25, 043112 (2018)

    Article  ADS  Google Scholar 

  17. K.-Y. Kim, Phys. Plasmas 16, 056706 (2009)

    Article  ADS  Google Scholar 

  18. K.-Y. Kim et al., IEEE J. Quantum Electron. 48, 797 (2012)

    Article  ADS  Google Scholar 

  19. Y. You, T. Oh, K. Kim, Phys. Rev. Lett. 109, 183902 (2012)

    Article  ADS  Google Scholar 

  20. T. Oh, Y. You, K. Kim, Opt. Express 20, 19778 (2012)

    Article  ADS  Google Scholar 

  21. A. Niknam et al., Phys. Plasmas 23, 053110 (2016)

    Article  ADS  Google Scholar 

  22. S. Safari et al., J. Appl. Phys. 123, 153101 (2018)

    Article  ADS  Google Scholar 

  23. S. Safari et al., Laser Phys. 29, 046002 (2019)

    Article  ADS  Google Scholar 

  24. D. Shelton, Phys. Rev. A 42, 2578 (1990)

    Article  ADS  Google Scholar 

  25. L. Zhang, G.-L. Wang, X.-X. Zhou, J. Mod. Opt. 63, 2159 (2016)

    Article  ADS  Google Scholar 

  26. W.-M. Wang et al., Opt. Lett. 36, 2608 (2011)

    Article  ADS  Google Scholar 

  27. M. Clerici et al., Phys. Rev. Lett. 110, 253901 (2013)

    Article  ADS  Google Scholar 

  28. T.-J. Wang et al., Appl. Phys. Lett. 95, 131108 (2009)

    Article  ADS  Google Scholar 

  29. I. Babushkin et al., New J. Phys. 13, 123029 (2011)

    Article  Google Scholar 

  30. C. Lu et al., Phys. Rev. A 92, 063850 (2015)

    Article  ADS  Google Scholar 

  31. L. Keldysh, Sov. Phys. JETP 20, 1307–1314 (1965)

    Google Scholar 

  32. M. Ammosov et al., Sov. Phys. JETP 64, 1191 (1986)

    Google Scholar 

  33. P. Sprangle et al., Phys. Rev. E 69, 066415 (2004)

    Article  ADS  Google Scholar 

  34. T. Popmintchev et al., Science 336, 1287 (2012)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Sharifian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alirezaee, H., Sharifian, M., Darbani, S.M.R. et al. Terahertz radiation emission from three-color laser-induced air plasma. Eur. Phys. J. Plus 135, 342 (2020). https://doi.org/10.1140/epjp/s13360-020-00320-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00320-z

Navigation