Skip to main content
Log in

Newton’s discrete dynamics

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In 1687, Isaac Newton published PHILOSOPHIÆ NATURALIS PRINCIPIA MATHEMATICA, where the classical analytic dynamics was formulated. But Newton also formulated a discrete dynamics, which is the central difference algorithm, known as the Verlet algorithm. In fact, Newton used the central difference to derive his second law. The central difference algorithm is used in computer simulations, where almost all Molecular Dynamics simulations are performed with the Verlet algorithm or other reformulations of the central difference algorithm. Here, we show that the discrete dynamics obtained by Newton’s algorithm for Kepler’s equation has the same solutions as the analytic dynamics. The discrete positions of a celestial body are located on an ellipse, which is the exact solution for a shadow Hamiltonian nearby the Hamiltonian for the analytic solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. I. Newton, PHILOSOPHIÆ NATURALIS PRINCIPIA MATHEMATICA. LONDINI, Anno MDCLXXXVII

  2. L.J. Garay, J. Mod. Phys. A 10, 145 (1995)

    Google Scholar 

  3. S. Toxvaerd, Phys. Rev. E 47, 343 (1993)

    Google Scholar 

  4. S. Toxvaerd, J. Chem. Phys. 140, 044102 (2014)

    Google Scholar 

  5. S. Toxvaerd, Phys Rev. E 50, 2271 (1994)

    Google Scholar 

  6. I.B. Cohen, A. Whitman, U. California Press, Berkeley (1999)

  7. L. Verlet, Phys. Rev. 159, 98 (1967)

    Google Scholar 

  8. L. Levesque, L. Verlet, Eur. Phys. J. H 44, 37 (2019)

    Google Scholar 

  9. R.W Hockney, J.W Eastwood, Computer Simulation Using Particles; Chapter 4 and 11. ISBN-13: 978-0852743928

  10. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids. Second Edition 2017, (2017). https://doi.org/10.1093/oso/9780198803195.001.0001

  11. D. Frenkel, B. Smit, Molecular Simulatiom; Academic Press, London (2002); ISBN-13: 978-0122673511

  12. A. Cromer, Am. J. Phys. 49, 455 (1981)

    Google Scholar 

  13. J.N. Tokis, IJAA 4, 683 (2014)

    Google Scholar 

  14. Newtons PROPOSITION I. THEOREM I., Figure 1 and Eq. (5) are for a fixed force center at S and before Newton formulated the third law. For two body central force dynamics the masses must be replaced by reduced masses

  15. J.M. Sanz-Serna, Acta Numer. 1, 243 (1992)

    Google Scholar 

  16. E. Hairer, Ann. Numer. Math. 1, 107 (1994)

    Google Scholar 

  17. S. Reich, SIAM J. Numer. Anal. 36, 1549 (1999)

    Google Scholar 

  18. J. Gans, D. Shalloway, Phys. Rev. E 61, 4587 (2000)

    Google Scholar 

  19. S. Toxvaerd, O.J. Heilmann, J.C. Dyre, J. Chem. Phys. 136, 224106 (2012)

    Google Scholar 

  20. S. Toxvaerd, J. Chem. Phys. 137, 214102 (2012)

    Google Scholar 

  21. It is convenient to express the energy and length in units of a given planet energy, e.g. \(E^*=gMm^*/r_p^*\), and length \(r_p^*\) from the sun (e. g. the planet Earth). The corresponding time unit is \(t^*=r_p^*\sqrt{m^*/E^*}\). The relations below are given in these reduced units

  22. M. Nauenberg, Am. J. Phys. 86, 765 (2018)

    Google Scholar 

  23. T.D. Lee, Phys. Lett. 122B, 217 (1983)

    Google Scholar 

  24. R. Friedberg, T.D. Lee, Nucl. Phys. B 225 [FS9], 1 (1983)

    Google Scholar 

  25. T.D. Lee, J. Stat. Phys. 46, 843 (1987)

    Google Scholar 

  26. M. Milgrom, Astrophys. J. 270, 371 (1983)

    Google Scholar 

Download references

Acknowledgements

Ole J. Heilmann, Niccolõ Guicciardini and Jeppe C Dyre are gratefully acknowledged. This work was supported by the VILLUM Foundation’s Matter project, Grant No. 16515.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Søren Toxvaerd.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toxvaerd, S. Newton’s discrete dynamics. Eur. Phys. J. Plus 135, 267 (2020). https://doi.org/10.1140/epjp/s13360-020-00271-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00271-5

Navigation