Skip to main content
Log in

Dynamics of entanglement creation between two spins coupled to a chain

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We study the dynamics of entanglement between two spins which is created by the coupling to a common thermal reservoir. The reservoir is a spin-\(\frac{1}{2}\) Ising transverse field chain thermally excited; the two defect spins couple to two spins of the chain which can be at a macroscopic distance. In the weak-coupling and low-temperature limit, the spin chain is mapped onto a bath of linearly interacting oscillators using the Holstein–Primakoff transformation. We analyze the time evolution of the density matrix of the two defect spins for transient times and deduce the entanglement which is generated by the common reservoir. We discuss several scenarios for different initial states of the two spins and for varying distances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. For chain sizes much larger than the defect spins separation, chains with even or odd number of spins should lead to equivalent dynamics.

  2. As the environment has periodic boundary conditions, the choice of coupling positions is only restrictive in that the number of particles between the defect spins must be even.

References

  1. A. Orieux, E. Diamanti, Recent advances on integrated quantum communications. J. Opt. 18(8), 083002 (2016)

    ADS  Google Scholar 

  2. J. Yin, Y. Cao, Y.-H. Li, S.-K. Liao, L. Zhang, J.-G. Ren, W.-Q. Cai, W.-Y. Liu, B. Li, H. Dai, G.-B. Li, L. Qi-Ming, Y.X. Yun-Hong Gong, S.-L. Li, F.-Z. Li, Y.-Y. Yin, Z.-Q. Jiang, M. Li, J.-J. Jia, G. Ren, D. He, Y.-L. Zhou, X.-X. Zhang, N. Wang, X. Chang, Z.-C. Zhu, N.-L. Liu, Y.-A. Chen, L. Chao-Yang, R. Shu, C.-Z. Peng, J.-Y. Wang, J.-W. Pan, Satellite-based entanglement distribution over 1200 kilometers. Science 356(6343), 1140–1144 (2017)

    Google Scholar 

  3. J.-G. Ren, X. Ping, H.-L. Yong, L. Zhang, S.-K. Liao, J. Yin, W.-Y. Liu, W.-Q. Cai, M. Yang, L. Li, K.-X. Yang, X. Han, Y.-Q. Yao, J. Li, W. Hai-Yan, S. Wan, L. Liu, D.-Q. Liu, Y.-W. Kuang, Z.-P. He, P. Shang, C. Guo, R.-H. Zheng, K. Tian, Z.-C. Zhu, N.-L. Liu, L. Chao-Yang, R. Shu, Y.-A. Chen, C.-Z. Peng, J.-Y. Wang, J.-W. Pan, Ground-to-satellite quantum teleportation. Nature 549(7670), 70–73 (2017)

    ADS  Google Scholar 

  4. M. Takita, A.W. Cross, A.D. Córcoles, J.M. Chow, J.M. Gambetta, Experimental demonstration of fault-tolerant state preparation with superconducting qubits. Phys. Rev. Lett. 119(18), 180501 (2017)

    ADS  Google Scholar 

  5. C. Neill, P. Roushan, K. Kechedzhi, S. Boixo, S.V. Isakov, V. Smelyanskiy, A. Megrant, B. Chiaro, A. Dunsworth, K. Arya, R. Barends, B. Burkett, Y. Chen, Z. Chen, A. Fowler, B. Foxen, M. Giustina, R. Graff, E. Jeffrey, T. Huang, J. Kelly, P. Klimov, E. Lucero, J. Mutus, M. Neeley, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T.C. White, H. Neven, J.M. Martinis, A blueprint for demonstrating quantum supremacy with superconducting qubits. Science 360(6385), 195–199 (2018)

    ADS  MathSciNet  Google Scholar 

  6. V. Giovannetti, S. Lloyd, L. Maccone, Advances in quantum metrology. Nat. Photonics 5(4), 222–229 (2011)

    ADS  Google Scholar 

  7. A. Einstein, B. Podolsky, N. Rosen, N. Bohr, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 696 (1935)

    MATH  Google Scholar 

  8. R. Horodecki, M. Horodecki, K. Horodecki, Quantum entanglement. Rev. Mod. Phys. 81(2), 865–942 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  9. C. Feiler, W.P. Schleich, Entanglement and analytical continuation: an intimate relation told by the Riemann zeta function. New J. Phys. 15(6), 063009 (2013)

    ADS  MathSciNet  Google Scholar 

  10. W.H. Zurek, Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75(3), 715–775 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  11. W.P. Schleich, Quantum physics: engineering decoherence. Nature 403(6767), 256–257 (2000)

    ADS  Google Scholar 

  12. F. Benatti, R. Floreanini, M. Piani, Environment induced entanglement in Markovian dissipative dynamics. Phys. Rev. Lett. 91(7), 70402 (2003)

    ADS  Google Scholar 

  13. A.R.R. Carvalho, M. Busse, O. Brodier, C. Viviescas, A. Buchleitner, Optimal dynamical characterization of entanglement. Phys. Rev. Lett. 98(19), 190501 (2007)

    ADS  Google Scholar 

  14. F. Mintert, A. Carvalho, M. Kus, A. Buchleitner, Measures and dynamics of entangled states. Phys. Rep. 415(4), 207–259 (2005)

    ADS  MathSciNet  Google Scholar 

  15. T. Yu, J. Eberly, Phonon decoherence of quantum entanglement: robust and fragile states. Phys. Rev. B 66(19), 193306 (2002)

    ADS  Google Scholar 

  16. L. Hackermüller, K. Hornberger, B. Brezger, A. Zeilinger, M. Arndt, Decoherence of matter waves by thermal emission of radiation. Nature 427(6976), 711–4 (2004)

    ADS  Google Scholar 

  17. T. Konrad, F. de Melo, M. Tiersch, C. Kasztelan, A. Aragão, A. Buchleitner, Evolution equation for quantum entanglement. Nat. Phys. 4(4), 99–102 (2007)

    Google Scholar 

  18. M. Tiersch, F. de Melo, A. Buchleitner, Universality in open system entanglement dynamics. J. Phys. A Math. Theor. 46(8), 085301 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  19. P. Wendenbaum, B.G. Taketani, D. Karevski, Decoherence of Bell states by local interactions with a suddenly quenched spin environment. Phys. Rev. A 90(2), 022125 (2014)

    ADS  Google Scholar 

  20. J. Preskill, Fault tolerant quantum computation, in Introduction to Quantum Computation and Information, ed. by H.-K. Lo, T. Spiller, S. Popescu (World Scientific Publishing Co. Pte. Ltd., Singapore, 1998), pp. 213–269. (chapter 8)

    Google Scholar 

  21. P. Facchi, D.A. Lidar, S. Pascazio, Unification of dynamical decoupling and the quantum Zeno effect. Phys. Rev. A 69(3), 032314 (2004)

    ADS  Google Scholar 

  22. S. Maniscalco, F. Francica, R.L. Zaffino, N.L. Gullo, F. Plastina, Protecting entanglement via the quantum Zeno effect. Phys. Rev. Lett. 100(9), 90503 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Y.-S. Kim, J.-C. Lee, O. Kwon, Y.-H. Kim, Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8(2), 117–120 (2011)

    Google Scholar 

  24. S. Pielawa, G. Morigi, D. Vitali, L. Davidovich, Generation of Einstein–Podolsky–Rosen-entangled radiation through an atomic reservoir. Phys. Rev. Lett. 98(24), 240401 (2007)

    ADS  Google Scholar 

  25. S. Diehl, A. Micheli, A. Kantian, B. Kraus, H.P. Büchler, P. Zoller, Quantum states and phases in driven open quantum systems with cold atoms. Nat. Phys. 4, 878–883 (2008)

    Google Scholar 

  26. F. Verstraete, M.M. Wolf, J. Ignacio Cirac, Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 5, 633–636 (2009)

    Google Scholar 

  27. S. Pielawa, L. Davidovich, D. Vitali, G. Morigi, Engineering atomic quantum reservoirs for photons. Phys. Rev. A 81(4), 043802 (2010)

    ADS  Google Scholar 

  28. H. Krauter, C.A. Muschik, K. Jensen, W. Wasilewski, J.M. Petersen, J. Ignacio Cirac, E.S. Polzik, Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. Phys. Rev. Lett. 107(8), 080503 (2011)

    ADS  Google Scholar 

  29. C.A. Muschik, E.S. Polzik, J. Ignacio Cirac, Dissipatively driven entanglement of two macroscopic atomic ensembles. Phys. Rev. A 83(5), 52312 (2011)

    ADS  Google Scholar 

  30. J.T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz, M. Chwalla, M. Hennrich, C.F. Roos, P. Zoller, R. Blatt, An open-system quantum simulator with trapped ions. Nature 470(7335), 486–91 (2011)

    ADS  Google Scholar 

  31. A. Messinger, B.G. Taketani, F.K. Wilhelm, Left-handed superlattice metamaterials for circuit QED. Phys. Rev. A 99(3), 032325 (2019)

    ADS  Google Scholar 

  32. H. Wang, A.P. Zhuravel, S. Indrajeet, B.G. Taketani, M.D. Hutchings, Y. Hao, F. Rouxinol, F.K. Wilhelm, M.D. LaHaye, A.V. Ustinov, B.L.T. Plourde, Mode structure in superconducting metamaterial transmission-line resonators. Phys. Rev. Appl. 11(5), 054062 (2019)

    ADS  Google Scholar 

  33. F. Pastawski, L. Clemente, J.I. Cirac, Quantum memories based on engineered dissipation. Phys. Rev. A 83(1), 012304 (2011)

    ADS  Google Scholar 

  34. K.G.H. Vollbrecht, C.A. Muschik, J. Ignacio Cirac, Entanglement distillation by dissipation and continuous quantum repeaters. Phys. Rev. Lett. 107(12), 120502 (2011)

    ADS  Google Scholar 

  35. G. Goldstein, P. Cappellaro, J.R. Maze, J.S. Hodges, L. Jiang, A.S. Sø rensen, M.D. Lukin, Environment-assisted precision measurement. Phys. Rev. Lett. 106(14), 140502 (2011)

    ADS  Google Scholar 

  36. L. Campos Venuti, C. Degli Esposti Boschi, M. Roncaglia, Long-distance entanglement in spin systems. Phys. Rev. Lett. 96(24), 247206 (2006)

    ADS  Google Scholar 

  37. L. Campos Venuti, C. Degli Esposti Boschi, M. Roncaglia, Qubit teleportation and transfer across antiferromagnetic spin chains. Phys. Rev. Lett. 99(6), 60401 (2007)

    ADS  Google Scholar 

  38. S.M. Giampaolo, F. Illuminati, Long-distance entanglement in many-body atomic and optical systems. New J. Phys. 12(2), 025019 (2010)

    ADS  Google Scholar 

  39. D.A. Lidar, K.B. Whaley, Decoherence-free subspaces and subsystems, in Irreversible Quantum Dynamics, vol. 622, ed. by F. Benatti, R. Floreanini (Springer, Berlin, 2003), pp. 83–120

    Google Scholar 

  40. A. Wolf, G. De Chiara, E. Kajari, E. Lutz, G. Morigi, Entangling two distant oscillators with a quantum reservoir. Europhys. Lett. 95(6), 60008 (2011)

    ADS  Google Scholar 

  41. E. Kajari, A. Wolf, E. Lutz, G. Morigi, Statistical mechanics of entanglement mediated by a thermal reservoir. Phys. Rev. A 85(4), 42318 (2012)

    ADS  Google Scholar 

  42. T. Fogarty, E. Kajari, B.G. Taketani, A. Wolf, T. Busch, G. Morigi, Entangling two defects via a surrounding crystal. Phys. Rev. A 87(5), 050304 (2013)

    ADS  Google Scholar 

  43. B.G. Taketani, T. Fogarty, E. Kajari, T. Busch, G. Morigi, Quantum reservoirs with ion chains. Phys. Rev. A 90(1), 012312 (2014)

    ADS  Google Scholar 

  44. D. Braun, Creation of entanglement by interaction with a common heat bath. Phys. Rev. Lett. 89(27), 277901 (2002)

    Google Scholar 

  45. L. Campos Venuti, S.M. Giampaolo, F. Illuminati, P. Zanardi, Long-distance entanglement and quantum teleportation in XX spin chains. Phys. Rev. A 76(5), 52328 (2007)

    ADS  Google Scholar 

  46. T. Stauber, F. Guinea, F. Guinea, Entanglement of spin chains with general boundaries and of dissipative systems. Ann. Phys. 18(7), 561–584 (2009)

    MathSciNet  MATH  Google Scholar 

  47. T. Holstein, H. Primakoff, Field dependence of the intrinsic domain magnetization of a ferromagnet. Phys. Rev. 58(12), 1098–1113 (1940)

    ADS  MATH  Google Scholar 

  48. W.K. Wootters, Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80(10), 2245–2248 (1998)

    ADS  MATH  Google Scholar 

  49. U. Weiss, Quantum Dissipative Systems, 2nd edn. (World Scientific, Singapore, 1999)

    MATH  Google Scholar 

  50. A. Osterloh, L. Amico, G. Falci, R. Fazio, Scaling of entanglement close to a quantum phase transitions. Nature 416, 608 (2002)

    ADS  Google Scholar 

  51. F.M. Cucchietti, S. Fernandez-Vidal, J.P. Paz, Universal decoherence induced by an environmental quantum phase transition. Phys. Rev. A 75(3), 032337 (2007)

    ADS  Google Scholar 

  52. J.D. Baltrusch, C. Cormick, G. Morigi, Quantum quenches of ion Coulomb crystals across structural instabilities. Phys. Rev. A 86, 032104 (2012)

    ADS  Google Scholar 

  53. P. Törmä, I. Jex, W.P. Schleich, Localization and diffusion in Ising-type quantum networks. Phys. Rev. A 65(5), 052110 (2002)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Alexander Wolf and Thomas Fogarty for helpful discussions and to Wolfgang Schleich for his insightful advice and for inspiring and stimulating discussions. G.M. acknowledges support from DPG SPP 1929. B.G.T. also acknowledges support from FAPESC and CNPq INCT-IQ (465469/2014-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno G. Taketani.

A Time evolution of the reduced density matrix

A Time evolution of the reduced density matrix

Under the assumption of vanishing defects free Hamiltonian, the full dynamics is described by

$$\begin{aligned} {\widetilde{H}}= & {} \frac{1}{2}(\widetilde{{\mathbf {p}}}^{S})^2 +\frac{1}{2}(\widetilde{{\mathbf {x}}}^{S})^TD^S\widetilde{{\mathbf {x}}}^{S} +S_x^S({\widetilde{\gamma }}^{S})^T\widetilde{{\mathbf {x}}}^S \nonumber \\&+\,\frac{1}{2}(\widetilde{{\mathbf {p}}}^{A})^2+\frac{1}{2} (\widetilde{{\mathbf {x}}}^{A})^TD^A\widetilde{{\mathbf {x}}}^{A} +S_x^A({\widetilde{\gamma }}^{A})^T\widetilde{{\mathbf {x}}}^A \nonumber \\= & {} {\widetilde{H}}_b^S +{\widetilde{H}}_i^S + {\widetilde{H}}_b^A + {\widetilde{H}}_i^A. \end{aligned}$$
(32)

In the interaction picture with respect to the bath Hamiltonian, we find

$$\begin{aligned} {\widetilde{H}}^{(I)}=e^{i{\widetilde{H}}_b^St} {\widetilde{H}}_i^Se^{-i{\widetilde{H}}_b^St}+e^{i{\widetilde{H}}_b^At} {\widetilde{H}}_i^Ae^{-i{\widetilde{H}}_b^At}. \end{aligned}$$
(33)

Using Baker–Campbell–Hausdorff expansion, one easily finds

$$\begin{aligned} {\widetilde{H}}^{(I)}= & {} \sum _i\bigg (\gamma _i^S\cos (\widetilde{\omega }_i^St) S_x^S{\widetilde{x}}_i^S+\frac{\gamma _i^S}{\widetilde{\omega }_i^S}S_x^S{\widetilde{p}}_i^S \nonumber \\&+\gamma _i^A\cos (\widetilde{\omega }_i^At)S_x^A{\widetilde{x}}_i^A +\frac{\gamma _i^A}{\widetilde{\omega }_i^A}S_x^A{\widetilde{p}}_i^A\bigg ). \end{aligned}$$
(34)

Neglecting the free defects Hamiltonian permits us to write the full time evolution operator as \({\widetilde{U}}(t)={\widetilde{U}}^S(t){\widetilde{U}}^A(t)\). Operators \({\widetilde{U}}^{(S,A)}(t)\) can now be obtained with the Ansatz

$$\begin{aligned} {\widetilde{U}}^{S,A}(t)= & {} \exp {\left( \displaystyle i\sum _i\delta _i^{S,A}(t)\right) } \nonumber \\&\times \exp {\left( i\displaystyle \sum _i\big (\phi _i^{S,A}(t) {\widetilde{p}}_i^{S,A}+(\phi _i^{S,A})'(t){\widetilde{x}}_i^{S,A}\big )\right) }. \end{aligned}$$
(35)

Deriving \({\widetilde{U}}(t)\) with respect to time

$$\begin{aligned} \dot{{\widetilde{U}}}= & {} i\sum _i\bigg ( {\dot{\delta }}_i^S +{\dot{\phi }}_i^S{\widetilde{p}}_i^S-\frac{1}{2} \frac{d}{dt} \big (\phi _i^S(\phi _i^{S})'\big )\bigg )\widetilde{U}^S\widetilde{U}^A \nonumber \\&+\,i\sum _i\bigg ( {\dot{\phi }}_i^S{\widetilde{x}}_i^S +({\dot{\phi }}_i^{S})'\phi _i^S\bigg )\widetilde{U}^S\widetilde{U}^A \nonumber \\&+\,i\sum _i\bigg ({\dot{\delta }}^A_i+{\dot{\phi }}_i^A{\widetilde{p}}_i^A -\frac{1}{2}\frac{d}{d t}\big (\phi _i^A(\phi _i^{A})'\big )\bigg ) \widetilde{U}^S\widetilde{U}^A \nonumber \\&+\,i\sum _i\bigg ( {\dot{\phi }}_i^A{\widetilde{x}}_i^A+({\dot{\phi }}_i^{A})'\phi _i^A\bigg ) \widetilde{U}^S\widetilde{U}^A, \end{aligned}$$
(36)

where the dot represents time derivative and the explicit time dependence has been omitted. Schrödinger’s equation for the evolution operator \(\dot{{\widetilde{U}}}(t)=-i{\widetilde{H}}^{(I)}(t){\widetilde{U}}(t)\) can be now used to find \(\phi _i^{A(B)}\) and \(\phi _i^{'A(B)}\). Using the initial condition \({\widetilde{U}}(0)=\mathbb {1}\), we find

$$\begin{aligned} \phi _i^{S,A}( t)= & {} -\frac{\gamma _i^{S,A}S_x^{S,A}}{\widetilde{\omega }_i^{S,A}}\sin \left( \widetilde{\omega }_i^{S,A} t\right) \nonumber \\ (\phi _i^{S,A})'( t)= & {} -\frac{\gamma _i^{S,A}S_x^{S,A}}{\widetilde{\omega }_i^{S,A}} \left( \cos \left( \widetilde{\omega }_i^{S,A} t\right) -1\right) \nonumber \\ \delta _i^{S,A}( t)= & {} \frac{(\gamma _i^{S,A})^2(S_x^{S,A})^2}{\widetilde{\omega }_i^{S,A}}\bigg ( t-\frac{\sin \left( \widetilde{\omega }_i^{S,A} t\right) }{ \widetilde{\omega }_i^{S,A}}\bigg ). \end{aligned}$$
(37)

The evolution operator is seen to be a displacement operator

$$\begin{aligned} \widetilde{U}( t)=e^{i \sum _i\big (\delta _i^S(t)+\delta _i^A(t)\big )} e^{i({\mathbf {Q}}^S\mathbf {{\widetilde{x}}}^S-{\mathbf {R}}^S \mathbf {{\widetilde{p}}}^S)}e^{i({\mathbf {Q}}^A\mathbf {{\widetilde{x}}}^A -{\mathbf {R}}^A\mathbf {{\widetilde{p}}}^A)}, \end{aligned}$$
(38)

with

$$\begin{aligned}&{\mathbf {Q}}^{S,A}=-\sum _i\frac{{\gamma }_i^{S,A}}{{{\widetilde{\omega }}}_i^{S,A}}\sin \left( {\widetilde{\omega }}_i^{S,A} t \right) S_x^{S,A}{\mathbf {e}}_i^{S,A}, \nonumber \\&\quad {\mathbf {R}}^{S,A}=-\sum _i\frac{{\gamma }_i^{S,A}}{{\big ({\widetilde{\omega }}}_i^{S,A}\big )^2}\left( \cos \left( {\widetilde{\omega }}_i^{S,A} t\right) -1\right) S_x^{S,A}{\mathbf {e}}_i^{S,A} \end{aligned}$$
(39)

and \({\mathbf {e}}_j\) are unit vectors on the j-th direction.

The evolved reduced density matrix of the defects can now be obtained by assuming a thermal environment and integrating over the bath degrees of freedom. After a lengthy but straightforward calculation, the matrix elements in the eigenbasis \(\{{|s_i\rangle } \}\) of the \(S_x^{S,A}\) operator are given by

$$\begin{aligned} {\langle s_i|} \rho _d(t){|s_j\rangle } \!= & {} \!\exp \! \left\{ \!-\!\big [f^S(t)(s_i^{S}\!-\!s_j^{S})^2\!+\!f^A(t)(s_i^{A}\!-\!s_j^{A})^2\big ]\right. \nonumber \\&\left. +\,i\big [\varphi ^S(t)((s_i^{S})^2\!-\!(s_j^{S})^2)\!+\!\varphi ^A(t)((s_i^{A})^2\!-(\!s_j^{A})^2)\big ]\right\} \nonumber \\&\times {\langle s_i|} \rho _d(0){|s_j\rangle }, \end{aligned}$$
(40)

where the coefficients \(f^{S,A}(t)\) and \(\varphi ^{S,A}(t)\) are given by

$$\begin{aligned} f^{S,A}(t)= & {} \sum _{i} \frac{\left( {\widetilde{\gamma }}_i^{S,A}\right) ^2(2{\widetilde{n}}^{S,A}_i-1)}{2\left( {\widetilde{\omega }}_i^{(S,A)}\right) ^3}\left( 1- \cos \left( {\widetilde{\omega }}_i^{S,A}t\right) \right) , \end{aligned}$$
(41)
$$\begin{aligned} \varphi ^{S,A}(t)= & {} \sum _{i} \frac{\left( {\widetilde{\gamma }}_i^{S,A}\right) ^2}{2\left( {\widetilde{\omega }}_i^{(S,A)}\right) ^2}\left( t -\frac{\sin \left( {\widetilde{\omega }}_i^{S,A}t\right) }{{\widetilde{\omega }}_i^{S,A}} \right) . \end{aligned}$$
(42)

and \({\widetilde{n}}^S_i\) (\({\widetilde{n}}^A_i\)) is the thermal occupation number of mode i of the symmetric (antisymmetric) bath defined by \({\widetilde{n}}^{S,A}_i=\displaystyle (e^{{\widetilde{\omega }}_i^{S,A}/T}-1)^{-1}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wendenbaum, P., Taketani, B.G., Kajari, E. et al. Dynamics of entanglement creation between two spins coupled to a chain. Eur. Phys. J. Plus 135, 182 (2020). https://doi.org/10.1140/epjp/s13360-020-00225-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00225-x

Navigation