Skip to main content
Log in

Investigation of the entropy generation during natural convection of Newtonian and non-Newtonian fluids inside the L-shaped cavity subjected to magnetic field: application of lattice Boltzmann method

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In the present paper, free heat convection and entropy generation of Newtonian and two types of non-Newtonian fluids, shear-thickening and shear-thinning, inside an L-shaped cavity subjected to a magnetic field have been investigated by the finite difference lattice Boltzmann method. The power-law model was used for modeling the rheology of the fluids. The bottom and left walls of the cavity have been kept at a uniform high temperature. Internal walls are also kept cold. The remaining walls have been insulated against heat and mass transfer. The Boussinesq approximation is used to take the temperature dependency of density into account. The distribution functions of energy and density are modeled through the use of the nine-velocity two-dimensional scheme. The effects of Hartmann number (Ha), aspect ratio, power-law index, and Rayleigh number (Ra), on the flow field, temperature distribution, and entropy distributions are studied. The results show that the magnetic field and the power-law index have an ever-decreasing effect on the heat transfer rate and the entropy generation, while the Ra number has an ever-increasing effect. The maximum heat transfer enhancement of 71% happens at the lowest and the highest values of power-law index and Ra number, respectively, for the case with no magnetic field. The maximum heat transfer deterioration of 77% happens at the highest and lowest values of power-law index and Ra number, respectively, in the presence of the highest magnetic field strength. It is interesting that the sensitivities of heat transfer rate and the entropy generation to the Ha number become significant for shear-thinning fluids. It is found that there is an everlasting interplay between conduction and convection contributions to the irreversibilities, so that, for the Newtonian and shear-thinning fluids, thermal irreversibilities, characterized by Be number, increase with Ha number, reaching to a maximum, and then decline. The heat transfer rate and the total entropy generation for the Newtonian and shear-thinning fluids increase, monotonically, by raising the aspect ratio, while the figure for the shear-thickening case is different. It is decreased first and then increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

AR:

Enclosure aspect ratio

\( B \) :

Strength of magnetic field

\( C_{p} \) :

Specific heat \( \left( {{\text{J}}\,{\text{kg}}^{ - 1} \,{\text{k}}^{ - 1} } \right) \)

\( F \) :

External forces

\( f \) :

Functions of density distribution

\( f_{\text{eq}} \) :

Functions of equilibrium density distribution

\( g \) :

Functions of internal energy distribution

\( g_{\text{eq}} \) :

Functions of equilibrium internal energy distribution

g :

Gravitational acceleration \( \left( {{\text{m}}\,{\text{s}}^{ - 2} } \right) \)

H :

Length of the inner walls \( \left( {\text{m}} \right) \)

\( {\text{Ha}} \) :

Hartmann number

\( K \) :

The coefficient of consistency

L :

Width of the enclosure\( \left( {\text{m}} \right) \)

\( n \) :

Index of power law

\( {\text{Nu}} \) :

Nusselt number

\( P \) :

Pressure

\( { \Pr } \) :

Prandtl number

\( {\text{Ra}} \) :

Rayleigh number

S :

Entropy generation

\( T \) :

Temperature (K)

\( t \) :

Time (s)

\( u \) :

Velocity in x-direction \( \left( {{\text{m}}\,{\text{s}}^{ - 1} } \right) \)

\( v \) :

Velocity in y-direction \( \left( {{\text{m}}\,{\text{s}}^{ - 1} } \right) \)

\( x,y \) :

Cartesian coordinates \( \left( {\text{m}} \right) \)

\( \sigma \) :

The electrical conductivity \( \left( {\varOmega \,{\text{m}}} \right) \)

\( \phi \) :

Relaxation time

\( \tau \) :

Shear stress \( \left( {{\text{N}}\,{\text{m}}^{ - 2} } \right) \)

\( \zeta \) :

Speeds of discrete particle

\( \Delta x \) :

Lattice spacing

\( \Delta t \) :

Time increment

\( \alpha \) :

Thermal diffusivity \( \left( {{\text{m}}^{2} \,{\text{s}}^{ - 1} } \right) \)

\( \rho \) :

Density \( \left( {{\text{kg}}\,{\text{m}}^{ - 3} } \right) \)

\( \mu \) :

Dynamic viscosity \( \left( {{\text{kg}}\,{\text{m}}^{ - 1} \,{\text{s}}^{ - 1} } \right) \)

\( \mu_{\text{a}} \) :

Apparent viscosity (Pa.s)

\( \psi \) :

Stream function \( \left( {{\text{m}}^{2} \,{\text{s}}^{ - 1} } \right) \)

\( \varPsi \) :

Dimensionless stream function

\( \chi \) :

Irreversibility distribution ratio

GenT:

Thermal generation

\( m \) :

Average

\( {\text{C }} \) :

Cold

\( {\text{H}} \) :

Hot

\( x,y \) :

Cartesian coordinates

\( \alpha \) :

The node number

References

  1. A.J. Chamkha, E. Abu-Nada, Mixed convection flow in single- and double-lid driven square cavities filled with water–Al2O3 nanofluid: effect of viscosity models. Eur. J. Mech. B/Fluids 36, 82–96 (2012). https://doi.org/10.1016/j.euromechflu.2012.03.005

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. A. Yadollahi, A. Khalesidoost, A. Kasaeipoor, M. Hatami, D. Jing, Physical investigation on silver–water nanofluid natural convection for an F-shaped cavity under the magnetic field effects. Eur. Phys. J. Plus (2017). https://doi.org/10.1140/epjp/i2017-11653-y

    Article  Google Scholar 

  3. K. Milani Shirvan, H.F. Öztop, K. Al-Salem, Mixed magnetohydrodynamic convection in a Cu–water-nanofluid-filled ventilated square cavity using the Taguchi method: a numerical investigation and optimization. Eur. Phys. J. Plus (2017). https://doi.org/10.1140/epjp/i2017-11471-3

    Article  Google Scholar 

  4. A. Hassanpour, A.A. Ranjbar, M. Sheikholeslami, Numerical study for forced MHD convection heat transfer of a nanofluid in a square cavity with a cylinder of constant heat flux. Eur. Phys. J. Plus (2018). https://doi.org/10.1140/epjp/i2018-11893-3

    Article  Google Scholar 

  5. M. Afrand, Using a magnetic field to reduce natural convection in a vertical cylindrical annulus. Int. J. Therm. Sci. 118, 12–23 (2017). https://doi.org/10.1016/j.ijthermalsci.2017.04.012

    Article  Google Scholar 

  6. M. Afrand, S. Farahat, A.H. Nezhad, G.A. Sheikhzadeh, F. Sarhaddi, 3-D numerical investigation of natural convection in a tilted cylindrical annulus containing molten potassium and controlling it using various magnetic fields. Int. J. Appl. Electromagn. Mech. 46, 809–821 (2014). https://doi.org/10.3233/JAE-141975

    Article  Google Scholar 

  7. M. Afrand, S. Farahat, A.H. Nezhad, G.A. Sheikhzadeh, F. Sarhaddi, Numerical simulation of electrically conducting fluid flow and free convective heat transfer in an annulus on applying a magnetic field. Heat Transf. Res. 45, 749–766 (2014). https://doi.org/10.1615/heattransres.2014007285

    Article  Google Scholar 

  8. M. Afrand, S. Farahat, A.H. Nezhad, G.A. Sheikhzadeh, F. Sarhaddi, S. Wongwises, Multi-objective optimization of natural convection in a cylindrical annulus mold under magnetic field using particle swarm algorithm. Int. Commun. Heat Mass Transf. 60, 13–20 (2015). https://doi.org/10.1016/j.icheatmasstransfer.2014.11.006

    Article  Google Scholar 

  9. M. Afrand, S. Rostami, M. Akbari, S. Wongwises, M.H. Esfe, A. Karimipour, Effect of induced electric field on magneto-natural convection in a vertical cylindrical annulus filled with liquid potassium. Int. J. Heat Mass Transf. 90, 418–426 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.059

    Article  Google Scholar 

  10. A.H. Pordanjani, A. Jahanbakhshi, A. Ahmadi Nadooshan, M. Afrand, Effect of two isothermal obstacles on the natural convection of nanofluid in the presence of magnetic field inside an enclosure with sinusoidal wall temperature distribution. Int. J. Heat Mass Transf. 121, 565–578 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.019

    Article  Google Scholar 

  11. M. Mahmoodia, M.H. Esfeb, M. Akbari, A. Karimipour, M. Afrand, Magneto-natural convection in square cavities with a source-sink pair on different walls. Int. J. Appl. Electromagn. Mech. 47, 21–32 (2015). https://doi.org/10.3233/JAE-130097

    Article  Google Scholar 

  12. A. Hajatzadeh Pordanjani, S. Aghakhani, A.A. Alnaqi, M. Afrand, Effect of alumina nano-powder on the convection and the entropy generation of water inside an inclined square cavity subjected to a magnetic field: uniform and non-uniform temperature boundary conditions. Int. J. Mech. Sci. 152, 99–117 (2019). https://doi.org/10.1016/j.ijmecsci.2018.12.030

    Article  Google Scholar 

  13. H. Teimouri, M. Afrand, N. Sina, A. Karimipour, A.H.M. Isfahani, Natural convection of liquid metal in a horizontal cylindrical annulus under radial magnetic field. Int. J. Appl. Electromagn. Mech. 49, 453–461 (2015). https://doi.org/10.3233/JAE-150028

    Article  Google Scholar 

  14. M. Afrand, D. Toghraie, A. Karimipour, S. Wongwises, A numerical study of natural convection in a vertical annulus filled with gallium in the presence of magnetic field. J. Magn. Magn. Mater. 430, 22–28 (2017). https://doi.org/10.1016/j.jmmm.2017.01.016

    Article  ADS  Google Scholar 

  15. Y. Hu, Y. He, S. Wang, Q. Wang, Schlaberg H. Inaki, Experimental and numerical investigation on natural convection heat transfer of TiO2–Water nanofluids in a square enclosure. J. Heat Transf. 136, 22502 (2013). https://doi.org/10.1115/1.4025499

    Article  Google Scholar 

  16. W.N. Zhou, Y.Y. Yan, J.L. Xu, A lattice Boltzmann simulation of enhanced heat transfer of nanofluids. Int. Commun. Heat Mass Transf. 55, 113–120 (2014). https://doi.org/10.1016/j.icheatmasstransfer.2014.04.010

    Article  Google Scholar 

  17. F.H. Lai, Y.T. Yang, Lattice Boltzmann simulation of natural convection heat transfer of Al2O3/water nanofluids in a square enclosure. Int. J. Therm. Sci. 50, 1930–1941 (2011). https://doi.org/10.1016/j.ijthermalsci.2011.04.015

    Article  Google Scholar 

  18. Y. He, C. Qi, Y. Hu, B. Qin, F. Li, Y. Ding, Lattice Boltzmann simulation of alumina–water nanofluid in a square cavity. Nanoscale Res. Lett. (2011). https://doi.org/10.1186/1556-276x-6-184

    Article  Google Scholar 

  19. G.H.R. Kefayati, S.F. Hosseinizadeh, M. Gorji, H. Sajjadi, Lattice Boltzmann simulation of natural convection in tall enclosures using water/SiO2 nanofluid. Int. Commun. Heat Mass Transf. 38, 798–805 (2011). https://doi.org/10.1016/j.icheatmasstransfer.2011.03.005

    Article  Google Scholar 

  20. M. Mahmoodi, S.M. Hashemi, Numerical study of natural convection of a nanofluid in C-shaped enclosures. Int. J. Therm. Sci. 55, 76–89 (2012). https://doi.org/10.1016/j.ijthermalsci.2012.01.002

    Article  Google Scholar 

  21. J. Guiet, M. Reggio, P. Vasseur, Natural convection of nanofluids in a square enclosure with a protruding heater. Adv. Mech. Eng. (2012). https://doi.org/10.1155/2012/167296

    Article  Google Scholar 

  22. M. Mahmoodi, Numerical simulation of free convection of a nanofluid in L-shaped cavities. Int. J. Therm. Sci. 50, 1731–1740 (2011). https://doi.org/10.1016/j.ijthermalsci.2011.04.009

    Article  Google Scholar 

  23. M. Kalteh, H. Hasani, Lattice Boltzmann simulation of nanofluid free convection heat transfer in an L-shaped enclosure. Superlattices Microstruct. 66, 112–128 (2014). https://doi.org/10.1016/j.spmi.2013.12.004

    Article  ADS  Google Scholar 

  24. M.A. Teamah, W.M. El-Maghlany, Augmentation of natural convective heat transfer in square cavity by utilizing nanofluids in the presence of magnetic field and uniform heat generation/absorption. Int. J. Therm. Sci. 58, 130–142 (2012)

    Article  Google Scholar 

  25. M. Sheikholeslami, S.A. Shehzad, Magnetohydrodynamic nanofluid convective flow in a porous enclosure by means of LBM. Int. J. Heat Mass Transf. 113, 796–805 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.130

    Article  Google Scholar 

  26. M. Sheikholeslami, K. Vajravelu, Nanofluid flow and heat transfer in a cavity with variable magnetic field. Appl. Math. Comput. 298, 272–282 (2017). https://doi.org/10.1016/j.amc.2016.11.025

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Sheikholeslami, M. Sadoughi, Mesoscopic method for MHD nanofluid flow inside a porous cavity considering various shapes of nanoparticles. Int. J. Heat Mass Transf. 113, 106–114 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.054

    Article  Google Scholar 

  28. S.M. Vahedi, A.H. Pordanjani, S. Wongwises, M. Afrand, On the role of enclosure side walls thickness and heater geometry in heat transfer enhancement of water–Al2O3 nanofluid in presence of a magnetic field: sensitivity analysis and optimization. J. Therm. Anal. Calorim. (2019). https://doi.org/10.1007/s10973-019-08224-6

    Article  Google Scholar 

  29. A.H. Pordanjani, S.M. Vahedi, F.W.S. Rikhtegar, Optimization and sensitivity analysis of magneto-hydrodynamic natural convection nanofluid flow inside a square enclosure using response surface methodology. J. Therm. Anal. Calorim. (2018). https://doi.org/10.1007/s10973-018-7652-6

    Article  Google Scholar 

  30. A. Ben-Nakhi, A.J. Chamkha, Conjugate natural convection in a square enclosure with inclined thin fin of arbitrary length. Int. J. Therm. Sci. 46, 467–478 (2007). https://doi.org/10.1016/j.ijthermalsci.2006.07.008

    Article  Google Scholar 

  31. M. Sheikholeslami, M.M. Rashidi, T. Hayat, D.D. Ganji, Free convection of magnetic nanofluid considering MFD viscosity effect. J. Mol. Liq. 218, 393–399 (2016). https://doi.org/10.1016/j.molliq.2016.02.093

    Article  Google Scholar 

  32. B.C. Shekar, N. Kishan, A.J. Chamkha, Soret and dufour effects on MHD natural convective heat and solute transfer in a fluid-saturated porous cavity. J. Porous Media 19, 669–686 (2016). https://doi.org/10.1615/JPorMedia.v19.i8.20

    Article  Google Scholar 

  33. G.S. Seth, R. Tripathi, R. Sharma, A.J. Chamkha, MHD double diffusive natural convection flow over exponentially accelerated inclined plate. J. Mech. 33, 87–99 (2017). https://doi.org/10.1017/.2016.56

    Article  Google Scholar 

  34. G. Huelsz, R. Rechtman, Heat transfer due to natural convection in an inclined square cavity using the lattice Boltzmann equation method. Int. J. Therm. Sci. 65, 111–119 (2013). https://doi.org/10.1016/j.ijthermalsci.2012.09.009

    Article  Google Scholar 

  35. M. Esfandiary, B. Mehmandoust, A. Karimipour, H.A. Pakravan, Natural convection of Al2O3–water nanofluid in an inclined enclosure with the effects of slip velocity mechanisms: Brownian motion and thermophoresis phenomenon. Int. J. Therm. Sci. 105, 137–158 (2016). https://doi.org/10.1007/s10973-015-4417-3

    Article  Google Scholar 

  36. M. Ghalambaz, E. Jamesahar, M.A. Ismael, A.J. Chamkha, Fluid-structure interaction study of natural convection heat transfer over a flexible oscillating fin in a square cavity. Int. J. Therm. Sci. 111, 256–273 (2017). https://doi.org/10.1016/j.ijthermalsci.2016.09.001

    Article  Google Scholar 

  37. S.A.M. Mehryan, M. Ghalambaz, M.A. Ismael, A.J. Chamkha, Analysis of fluid–solid interaction in MHD natural convection in a square cavity equally partitioned by a vertical flexible membrane. J. Magn. Magn. Mater. 424, 161–173 (2017). https://doi.org/10.1016/j.jmmm.2016.09.123

    Article  ADS  Google Scholar 

  38. N.O. Moraga, G.P. Parada, D.A. Vasco, Power law non-Newtonian fluid unsteady conjugate three-dimensional natural convection inside a vessel driven by surrounding air thermal convection in a cavity. Int. J. Therm. Sci. 107, 247–258 (2016). https://doi.org/10.1016/j.ijthermalsci.2016.04.007

    Article  Google Scholar 

  39. P. Ternik, R. Rudolf, Laminar natural convection of non-Newtonian nanofluids in a square enclosure with differentially heated side walls. Int. J. Simul. Model. 12, 5–16 (2013). https://doi.org/10.2507/IJSIMM12(1)1.215

    Article  Google Scholar 

  40. H. Ozoe, S.W. Churchill, Hydrodynamic stability and natural convection in Ostwald-de Waele and Ellis fluids: the development of a numerical solution. AIChE J. 18, 1196–1207 (1972). https://doi.org/10.1002/aic.690180617

    Article  Google Scholar 

  41. O. Turan, A. Sachdeva, N. Chakraborty, R.J. Poole, Laminar natural convection of power-law fluids in a square enclosure with differentially heated side walls subjected to constant temperatures. J. Nonnewton Fluid Mech. 166, 1049–1063 (2011). https://doi.org/10.1016/j.jnnfm.2011.06.003

    Article  MATH  Google Scholar 

  42. O. Turan, A. Sachdeva, R.J. Poole, N. Chakraborty, Aspect ratio and boundary conditions effects on laminar natural convection of power-law fluids in a rectangular enclosure with differentially heated side walls. Int. J. Heat Mass Transf. 60, 722–738 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.01.017

    Article  Google Scholar 

  43. M. Habibi Matin, I. Pop, S. Khanchezar, Natural convection of power-law fluid between two-square eccentric duct annuli. J. Nonnewton Fluid Mech. 197, 11–23 (2013). https://doi.org/10.1016/j.jnnfm.2013.02.002

    Article  Google Scholar 

  44. I. Vinogradov, L. Khezzar, D. Siginer, Heat transfer of non-newtonian dilatant power law fluids in square and rectangular cavities. J. Appl. Fluid Mech. 4, 37–42 (2011)

    Google Scholar 

  45. G.B. Kim, J.M. Hyun, H.S. Kwak, Transient buoyant convection of a power-law non-Newtonian fluid in an enclosure. Int. J. Heat Mass Transf. 46, 3605–3617 (2003). https://doi.org/10.1016/s0017-9310(03)00149-2

    Article  MATH  Google Scholar 

  46. Y.A. Cengel, M.A. Boles, Thermodynamics an engineering approach. Renew. Sustain. Energy Rev. 80, 1029 (2013). https://doi.org/10.1017/CBO9781107415324.004

    Article  Google Scholar 

  47. A. Bejan, Second law analysis in heat transfer. Energy 5, 720–732 (1980). https://doi.org/10.1016/0360-5442(80)90091-2

    Article  ADS  Google Scholar 

  48. H.F. Oztop, K. Al-Salem, A review on entropy generation in natural and mixed convection heat transfer for energy systems. Renew. Sustain. Energy Rev. 16, 911–920 (2012). https://doi.org/10.1016/j.rser.2011.09.012

    Article  Google Scholar 

  49. A.H. Mahmoudi, M. Shahi, F. Talebi, Entropy generation due to natural convection in a partially open cavity with a thin heat source subjected to a nanofluid. Numer. Heat Transf. A Appl. 61, 283–305 (2012). https://doi.org/10.1080/10407782.2012.647990

    Article  ADS  Google Scholar 

  50. G.H.R. Kefayati, Heat transfer and entropy generation of natural convection on non-Newtonian nanofluids in a porous cavity. Powder Technol. 299, 127–149 (2016). https://doi.org/10.1016/j.powtec.2016.05.032

    Article  Google Scholar 

  51. G.R. Kefayati, Simulation of heat transfer and entropy generation of MHD natural convection of non-Newtonian nanofluid in an enclosure. Int. J. Heat Mass Transf. 92, 1066–1089 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.078

    Article  Google Scholar 

  52. G.H.R. Kefayati, FDLBM simulation of entropy generation due to natural convection in an enclosure filled with non-Newtonian nanofluid. Powder Technol. 273, 176–190 (2015). https://doi.org/10.1016/j.powtec.2014.12.042

    Article  Google Scholar 

  53. R.P. Chhabra, J.F. Richardson, Non-newtonian flow and applied rheology: engineering applications. Int. J. Thermophys. 19, 1197–1208 (2008). https://doi.org/10.1023/A:1022654112630

    Article  Google Scholar 

  54. M.H. Matin, W.A. Khan, Laminar natural convection of non-Newtonian power-law fluids between concentric circular cylinders. Int. Commun. Heat Mass Transf. 43, 112–121 (2013). https://doi.org/10.1016/j.icheatmasstransfer.2013.02.006

    Article  Google Scholar 

  55. G.R. Kefayati, Simulation of non-Newtonian molten polymer on natural convection in a sinusoidal heated cavity using FDLBM. J. Mol. Liq. 195, 165–174 (2014). https://doi.org/10.1016/j.molliq.2014.02.031

    Article  Google Scholar 

  56. G.H.R. Kefayati, FDLBM simulation of magnetic field effect on natural convection of non-Newtonian power-law fluids in a linearly heated cavity. Powder Technol. 256, 87–99 (2014). https://doi.org/10.1016/j.powtec.2014.02.014

    Article  Google Scholar 

  57. G.R. Kefayati, Simulation of magnetic field effect on natural convection of non-Newtonian power-law fluids in a sinusoidal heated cavity using FDLBM. Int. Commun. Heat Mass Transf. 53, 139–153 (2014)

    Article  Google Scholar 

  58. R. Benzi, S. Succi, M. Vergassola, The lattice Boltzmann equation: theory and applications. Phys. Rep. 222, 145–197 (1992). https://doi.org/10.1016/0370-1573(92)90090-M

    Article  ADS  Google Scholar 

  59. J.P. Boon, The lattice Boltzmann equation for fluid dynamics and beyond. Eur. J. Mech. B/Fluids 22, 101 (2003). https://doi.org/10.1016/s0997-7546(02)00005-5

    Article  ADS  Google Scholar 

  60. G.H.R. Kefayati, Double-diffusive mixed convection of pseudoplastic fluids in a two sided lid-driven cavity using FDLBM. J. Taiwan Inst. Chem. Eng. 45, 2122–2139 (2014). https://doi.org/10.1016/j.jtice.2014.05.026

    Article  Google Scholar 

  61. G.R. Kefayati, FDLBM simulation of mixed convection in a lid-driven cavity filled with non-Newtonian nanofluid in the presence of magnetic field. Int. J. Therm. Sci. 95, 29–46 (2015). https://doi.org/10.1016/j.ijthermalsci.2015.03.018

    Article  Google Scholar 

  62. G.H.R. Kefayati, Simulation of vertical and horizontal magnetic fields effects on non-Newtonian power-law fluids in an internal flow using FDLBM. Comput. Fluids 114, 12–25 (2015). https://doi.org/10.1016/j.compfluid.2015.02.009

    Article  MathSciNet  MATH  Google Scholar 

  63. G.H.R. Kefayati, FDLBM simulation of double-diffusive mixed convection of shear-thinning fluids between two-square concentric duct annuli. Heat Mass Transf. Und Stoffuebertragung 51, 1505–1521 (2015). https://doi.org/10.1007/s00231-015-1516-4

    Article  ADS  Google Scholar 

  64. M. Siavashi, A. Rostami, Two-phase simulation of non-Newtonian nanofluid natural convection in a circular annulus partially or completely filled with porous media. Int. J. Mech. Sci. 133, 689–703 (2017). https://doi.org/10.1016/j.ijmecsci.2017.09.031

    Article  Google Scholar 

  65. S.C. Fu, R.M.C. So, W.W.F. Leung, Stochastic finite difference lattice Boltzmann method for steady incompressible viscous flows. J. Comput. Phys. 229, 6084–6103 (2010). https://doi.org/10.1016/j.jcp.2010.04.041

    Article  ADS  MATH  Google Scholar 

  66. S.C. Fu, R.M.C. So, W.W.F. Leung, Linearized-Boltzmann-type-equation-based finite difference method for thermal incompressible flow. Comput. Fluids 69, 67–80 (2012). https://doi.org/10.1016/j.compfluid.2012.08.016

    Article  MathSciNet  MATH  Google Scholar 

  67. S. Aghakhani, A.H. Pordanjani, A. Karimipour, A. Abdollahi, M. Afrand, Numerical investigation of heat transfer in a power-law non-Newtonian fluid in a C-Shaped cavity with magnetic field effect using finite difference lattice Boltzmann method. Comput. Fluids 176, 51–67 (2018). https://doi.org/10.1016/j.compfluid.2018.09.012

    Article  MathSciNet  MATH  Google Scholar 

  68. E. Aharonov, D.H. Rothman, Non-Newtonian flow (through porous media): a lattice-Boltzmann method. Geophys. Res. Lett. 20, 679–682 (1993). https://doi.org/10.1029/93GL00473

    Article  ADS  Google Scholar 

  69. S. Gabbanelli, G. Drazer, J. Koplik, Lattice Boltzmann method for non-Newtonian (power-law) fluids. Phys. Rev. E Stat. Nonlinear, Soft Matter Phys. (2005). https://doi.org/10.1103/physreve.72.046312

    Article  Google Scholar 

  70. N. Rakotomalala, D. Salin, P. Watzky, Simulations of viscous flows of complex fluids with a Bhatnagar, Gross, and Krook lattice gas. Phys. Fluids 8, 3200–3202 (1996). https://doi.org/10.1063/1.869093

    Article  ADS  MATH  Google Scholar 

  71. M. Yoshino, Y. Hotta, T. Hirozane, M. Endo, A numerical method for incompressible non-Newtonian fluid flows based on the lattice Boltzmann method. J. Nonnewton. Fluid Mech. 147, 69–78 (2007). https://doi.org/10.1016/j.jnnfm.2007.07.007

    Article  MATH  Google Scholar 

  72. L. Khezzar, D. Siginer, I. Vinogradov, Natural convection of power law fluids in inclined cavities. Int. J. Therm. Sci. 53, 8–17 (2012). https://doi.org/10.1016/j.ijthermalsci.2011.10.020

    Article  Google Scholar 

  73. G.R. Kefayati, Mesoscopic simulation of magnetic field effect on natural convection of power-law fluids in a partially heated cavity. Chem. Eng. Res. Des. 94, 337–354 (2014). https://doi.org/10.1016/j.cherd.2014.08.014

    Article  Google Scholar 

Download references

Acknowledgements

This research is partially supported by the National Science Foundation of China (61503284).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Afrand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Aghakhani, S., Hajatzadeh Pordanjani, A. et al. Investigation of the entropy generation during natural convection of Newtonian and non-Newtonian fluids inside the L-shaped cavity subjected to magnetic field: application of lattice Boltzmann method. Eur. Phys. J. Plus 135, 184 (2020). https://doi.org/10.1140/epjp/s13360-020-00169-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00169-2

Navigation