Skip to main content
Log in

Anisotropic Lifshitz holography in Einstein–Proca theory with stable negative mass spectrum

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this article, we focus on constructing a new family of spatially anisotropic Lifshitz spacetimes with arbitrary dynamical exponent z and constant negative curvature in \(d + 1\) dimensions within the framework of the Einstein–Proca theory with a single vector field. So far, this kind of anisotropic spaces has been constructed with the aid of a set of vector fields. We also consider the spatially isotropic case as a particular limit. The constructed metric tensor depends on the spacetime dimensionality, the critical exponent and the Lifshitz radius; while, the curvature scalar depends just on the number of dimensions. We also obtain a novel spectrum with negative squared mass; we compute the corresponding Breitenlohner–Freedman bound and observe that the found family of spatially anisotropic Lifshitz spaces respects this bound. Hence, these new solutions are stable and can be useful within the gravity/condensed matter theory holographic duality, since the spectrum with negative squared mass is complementary to the positive ones already known in the literature. We also examine the null energy condition and show that it is essentially satisfied along all the boundary directions, i.e., along all directions, except the r one, of our Lifshitz spacetime with the corresponding consistency conditions imposed on the scaling exponents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. It is important to note that there is no gauge invariance of the action (10).

References

  1. M. Taylor, Lifshitz holography. Class. Quantum Gravit. 33, 033001 (2016). arXiv:1512.03554 [hep-th]

    Google Scholar 

  2. M. Taylor, Non-relativistic holography (2008). arXiv:0812.0530 [hep-th]

  3. M. Ammon, J. Erdmenger, Gauge-Gravity Duality: Foundations and Applications (Cambridge University Press, Cambridge, 2015)

    Google Scholar 

  4. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998)

    Google Scholar 

  5. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 38, 1113 (1999). hep-th/9711200

    Google Scholar 

  6. H. Nastase, Introduction to AdS-CFT (2007). arXiv:0712.0689 [hep-th]

  7. M. Natsuume, AdS/CFT duality user guide. Lect. Notes Phys. 903, (2015). arXiv:1409.3575 [hep-th]

  8. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics. Class. Quantum Gravit. 26, 224002 (2009). arXiv: 0903.3246 [hep-th]

    Google Scholar 

  9. C.P. Herzog, Lectures on holographic superfluidity and superconductivity. J. Phys. A 42, 343001 (2009). arXiv:0904.1975 [hep-th]

    Google Scholar 

  10. J. McGreevy, Holographic duality with a view toward many-body physics. Adv. High Energy Phys. 723105, (2010). arXiv:0909.0518 [hep-th]

  11. S.A. Hartnoll, Quantum critical dynamics from black holes. arXiv: 0909.3553 [cond-mat.str-el]

  12. G.T. Horowitz, Introduction to holographic superconductors. Lect. Notes Phys. 828, 313 (2011). arXiv:1002.1722 [hep-th]

    Google Scholar 

  13. G.T. Horowitz, Surprising connections between general relativity and condensed matter. Class. Quantum Gravit. 28, 114008 (2011). arXiv:1010.2784 [gr-qc]

    Google Scholar 

  14. S.A. Harnoll, A. Lucas, S. Sachdev, Holographic quantum matter (2016). arXiv:1612.07324v3 [hep-th]

  15. Z.-Y. Nie, Q. Pan, H.-B. Zeng, H. Zeng, Split degenerate states and stable p+ip phases from holography. Eur. Phys. J. C 77, 69 (2017). arXiv:1611.07278 [hep-th]

    Google Scholar 

  16. J.W. Foster, J.T. Liu, Spatial anisotropy in nonrelativistic holography. arXiv:1612.01557 [hep-th]

  17. J.A. Hertz, Quantum critical phenomena. Phys. Rev. B 14, 1165 (1976)

    Google Scholar 

  18. E.M. Lifshitz, On the theory of second-order phase transitions I & II. Zh. Eksp. Teor. Fiz. 11, 255 (1941)

    Google Scholar 

  19. D. Anselmi, M. Halat, Renormalization of Lorentz violating theories. Phys. Rev. D 76, 125011 (2007). arXiv:0707.2480 [hep-th]

    Google Scholar 

  20. C.F. Farias, M. Gomes, J.R. Nascimento, A.Y. Petrov, A.J. da Silva, On the effective potential, Hořava–Lifshitz-like theories and finite temperature. Phys. Rev. D 89, 025014 (2014). arXiv:1311.6313 [hep-th]

    Google Scholar 

  21. H. Hatanaka, M. Sakamoto, K. Takenaga, Gauge–Higgs unification in Lifshitz type gauge theory. Phys. Rev. D 84, 025018 (2011). arXiv:1105.3534 [hep-ph]

    Google Scholar 

  22. J. Alexandre, N.E. Mavromatos, D. Yawitch, Emergent relativistic-like kinematics and dynamical mass generation for a Lifshitz-type Yukawa model. Phys. Rev. D 82, 125014 (2010). arXiv:1009.4811 [hep-ph]

    Google Scholar 

  23. J. Alexandre, A. Vergou, Properties of a consistent Lorentz-violating Abelian gauge theory. Phys. Rev. D 83, 125008 (2011). arXiv:1103.2701 [hep-th]

    Google Scholar 

  24. P. Hořava, Quantum criticality and Yang–Mills gauge theory. Phys. Lett. B 694, 172 (2010). arXiv:0811.2217 [hep-th]

    Google Scholar 

  25. B. Chen, Q.-G. Huang, Field theory at a Lifshitz point. Phys. Lett. B 683, 108 (2010). arXiv:0904.4565 [hep-th]

    Google Scholar 

  26. J. Alexandre, N.E. Mavromatos, A Lorentz-violating alternative to Higgs mechanism? Phys. Rev. D 84, 105013 (2011). arXiv:1108.3983 [hep-ph]

    Google Scholar 

  27. J. Alexandre, Lifshitz-type quantum field theories in particle physics. Int. J. Mod. Phys. A 26, 4523 (2011). arXiv:1109.5629 [hep-ph]

    Google Scholar 

  28. P. Hořava, Quantum gravity at a Lifshitz point. Phys. Rev. D 79, 084008 (2009). arXiv:0901.3775 [hep-th]

    Google Scholar 

  29. M. Henneaux, A. Kleinschmidt, G.L. Gomez, A dynamical inconsistency of Hořava gravity. Phys. Rev. D 81, 064002 (2010). arXiv:0912.0399 [hep-th]

    Google Scholar 

  30. D. Blas, O. Pujolas, S. Sibiryakov, Consistent extension of Hořava gravity. Phys. Rev. Lett. 104, 181302 (2010). arXiv:0909.3525 [hep-th]

    Google Scholar 

  31. T. Zhu, F.-W. Shu, Q. Wu, A. Wang, General covariant Horava–Lifshitz gravity without projectability condition and its applications to cosmology. Phys. Rev. D 85, 044053 (2012). arXiv:1110.5106 [hep-th]

    Google Scholar 

  32. P. Hořava, Spectral dimension of universe in quantum gravity at Lifshitz point. Phys. Rev. Lett. 102, 161301 (2009). arXiv:0902.3657 [hep-th]

    Google Scholar 

  33. T. Griffin, P. Hořava, ChM Melby-Thompson, Conformal Lifshitz gravity from holography. JHEP 1205, 010 (2012). arXiv: 1112.5660 [hep-th]

    Google Scholar 

  34. T. Griffin, P. Hořava, ChM Melby-Thompson, Lifshitz gravity for Lifshitz holography. Phys. Rev. Lett. 110, 081602 (2013). arXiv: 1211.4872 [hep-th]

    Google Scholar 

  35. E. Kiritsis, G. Kofinas, Hořava–Lifshitz cosmology. Nucl. Phys. B 821, 467 (2009). arXiv:0904.1334 [hep-th]

    Google Scholar 

  36. H. Lu, J. Mei, C.N. Pope, Solutions to Hořava gravity. Phys. Rev. Lett. 103, 091301 (2009). arXiv:0904.1595 [hep-th]

    Google Scholar 

  37. S. Mukohyama, Scale-invariant cosmological perturbations from Hořava–Lifshitz gravity without inflation. JCAP 0906, 001 (2009). arXiv:0904.2190 [hep-th]

    Google Scholar 

  38. A. Kobakhidze, On the infrared limit of Horava’s gravity with the global Hamiltonian constraint. Phys. Rev. D 82, 064011 (2010). arXiv:0906.5401 [hep-th]

    Google Scholar 

  39. C. Charmousis, G. Niz, A. Padilla, P.M. Saffin, Strong coupling in Hořava gravity. JHEP 0908, 070 (2009). arXiv:0905.2579 [hep-th]

    Google Scholar 

  40. T. Clifton, P.G. Ferreira, A. Padilla, C. Skordis, Modified gravity and cosmology. Phys. Rep. 513, 1 (2012). arXiv:1106.2476 [astro-ph.CO]

    Google Scholar 

  41. B.F. Li, A. Wang, Y. Wu, Z.C. Wu, Quantization of (1+1)-dimensional Hořava–Lifshitz theory of gravity. Phys. Rev. D 90, 124076 (2014). arXiv:1408.2345 [hep-th]

    Google Scholar 

  42. S. Kachru, X. Liu, M. Mulligan, Gravity duals of Lifshitz-like fixed points. Phys. Rev. D 78, 106005 (2008). arXiv:0808.1725 [hep-th]

    Google Scholar 

  43. M.C.N. Cheng, S.A. Hartnoll, C.A. Keeler, Deformations of Lifshitz holography. JHEP 03, 062 (2010). arXiv:0912.2784 [hep-th]

    Google Scholar 

  44. S. Gubser, I.R. Klebanov, A.M. Polyakov, Gauge theory correlators from noncritical string theory. Phys. Lett. B 428, 105114 (1998). arXiv:hep-th/9802109

    Google Scholar 

  45. E. Witten, Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253291 (1998). arXiv:hep-th/9802150

    Google Scholar 

  46. D. Roychowdhury, On anisotropic black branes with Lifshitz scaling. Phys. Rev. B 759, 410 (2016). arXiv:1509.05229 [hep-th]

    Google Scholar 

  47. H.S. Liu, H. Lu, Thermodynamics of Lifshitz black holes. JHEP 12, 071 (2014). arXiv:1410.6181 [hep-th]

    Google Scholar 

  48. P. Breitenlohner, D.Z. Freedman, Positive energy in anti-de Sitter backgrounds and gauged extended supergravity. Phys. Lett. B 115, 197 (1982)

    Google Scholar 

  49. H. Guo, A. Herrera-Aguilar, Y.-X. Liu, D. Malagón-Morejón, R.R. Mora-Luna, Localization of bulk matter fields, the hierarchy problem and corrections to Coulomb’s law on a pure de Sitter thick braneworld. Phys. Rev. D 87, 095011 (2013). arXiv:1103.2430 [hep-th]

    Google Scholar 

  50. A. Herrera-Aguilar, A.D. Rojas, E. Santos-Rodríguez, Localization of gauge fields in a tachyonic de Sitter thick braneworld. Eur. Phys. J. C 74, 2770 (2014). arXiv:1401.0999 [hep-th]

    Google Scholar 

  51. R.C. Myers, A. Singh, Comments on holographic entanglement entropy and RG flows. JHEP 01, 102 (2012). arXiv:1202.2068 [hep-th]

    Google Scholar 

  52. C. Hoyos, P. Koroteev, On the null energy condition and causality in Lifshitz holography. Phys. Rev. D 82, 084002 (2010)

    Google Scholar 

Download references

Acknowledgements

The work of AHA was completed at the Aspen Center for Physics, which is supported by National Science Foundation Grant PHY-1607611 and a Simons Foundation Grant as well. He expresses his gratitude to the ACP for providing an inspiring and encouraging atmosphere for conducting part of this research. All authors thank E. Ayón-Beato and U. Nucamendi for fruitful and illuminating discussions. RCF and AHA acknowledge a VIEP-BUAP Grant. RCF, AHA and JMR thank SNI for support. VMZ acknowledges a CONACYT PhD fellowship. UN acknowledges a fellowship granted by PROMEP-SEP and is grateful to SNI-CONACYT for a research assistant Grant. RCF, AHA, VMZ and UN acknowledgments support by a CONACYT Grant No. A1-S-38041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Matlalcuatzi-Zamora.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cartas-Fuentevilla, R., Herrera-Aguilar, A., Matlalcuatzi-Zamora, V. et al. Anisotropic Lifshitz holography in Einstein–Proca theory with stable negative mass spectrum. Eur. Phys. J. Plus 135, 155 (2020). https://doi.org/10.1140/epjp/s13360-019-00091-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-019-00091-2

Navigation