Skip to main content
Log in

Electrostatic field of angular-dependent surface electrodes

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We present an analytic strategy to find the electric field generated by surface electrode SE with angular-dependent potential. This system is a planar region \({\mathscr {A}}\) kept at a fixed but non-uniform electric potential \(V(\phi )\) with an arbitrary angular dependence. We show that the generated electric field is due to the contribution of two fields: one that depends on the circulation on the contour of the planar region—in a Biot–Savart-Like (BSL) term—and another one that accounts for the angular variations of the potential in \({\mathscr {A}}\). This approach can be used to find exact solutions of the BSL electric field for circular or polygonal contours of the planar region with periodic distributions of the electric potential. Analytic results are validated with numerical computations and the Finite-Element Method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Being only a an analogy between two different physical systems: the electrostatic where charges are static and the magnetostatic where current is time-independent.

  2. Generally speaking, an electric current along a wire is considered as constant. However, there are devices that emulate non-uniform distributed currents along wires (see for instance the setup in [24] which can be used in the experimental evaluation of pipe-lines’ cathodic protection, the DC version of this setup would also emulate a steady non-uniform current along a wire). Another case concerns the electric current of a point-like charge moving in a loop: the electric current associated with this charge is not uniform.

  3. For instance, a smooth linear function \({\mathscr {V}}(\phi ) = \phi \) can be approximated by selecting \(V(\phi )\) as an staircase function satisfying periodicity conditions Eq. (6). However, in that situation, there would exist a discontinuity in which \(\partial _\phi {\mathscr {V}}\) is a Dirac delta function, and the Taylor series expansion would diverge, no matter how large becomes N.

  4. At this point, it is necessary emphasizing that we deal with the electrostatic problem which involves no currents. However, in the SE with variable potential \(V(\phi )\), the lines of the electric field can be matched with the field lines of two superposed magnetic fields of its magnetostatic analogue.

  5. The angle in the Gegenbauer Polynomial is computed as usual, \(\theta ({\varvec{r}}) = \arctan (\rho (x,z)/y)\) if \(y>0\), \(\pi - \arctan (-\rho (x,z)/y)\) if \(y<0\), otherwise \(\pi /2\), with \(\rho (x,z)^2 = x^2 + z^2\) accounting for the coordinate transformation. In other words, \(\theta ({\varvec{r}}) =(1-{\mathscr {U}}(\Upsilon _n({\varvec{r}}))\pi + \Theta _n({\varvec{r}})\) if \(\Lambda _n({\varvec{r}}) \ne 0\), otherwise \(\pi /2\), where \(\Theta _n({\varvec{r}})=\arctan (\Upsilon ({\varvec{r}})/\Lambda _n({\varvec{r}}))\) and \(\Upsilon _n({\varvec{r}})=\sqrt{\lambda _n({\varvec{r}})^2-\Lambda _n({\varvec{r}})^2}\).

  6. We chose this potential, because the coefficients \({\mathscr {A}}^{(n)}_{m}(r)\) and \({\mathscr {B}}^{(n)}_{m}(r)\) are found easily. However, other type of potentials portray as good options, e.g., gaussian-like potentials, power-law potentials, etc.

References

  1. G. Hummer, Electrostatic potential of a homogeneously charged square and cube in two and three dimensions. Journal of electrostatics 36(3), 285–291 (1996). https://doi.org/10.1016/0304-3886(95)00052-6

    Google Scholar 

  2. J. Lekner, Analytical expression for the electric field enhancement between two closely-spaced conducting spheres. Journal of Electrostatics 68(4), 299–304 (2010). https://doi.org/10.1016/j.elstat.2010.03.001

    Google Scholar 

  3. O. Ciftja, Calculation of the coulomb electrostatic potential created by a uniformly charged square on its plane: exact mathematical formulas. Journal of Electrostatics 71(2), 102–108 (2013). https://doi.org/10.1016/j.elstat.2012.12.003

    Google Scholar 

  4. P.A. Polyakov, N.E. Rusakova, Y.V. Samukhina, New solutions for charge distribution on conductor surface. Journal of Electrostatics 77, 147–152 (2015). https://doi.org/10.1016/j.elstat.2015.08.003

    Google Scholar 

  5. K. McCreery, H. Greenside, The electric field of a uniformly charged cubic shell. American Journal of Physics 86(1), 36–44 (2018). https://doi.org/10.1119/1.5009446

    Google Scholar 

  6. J.D. Jackson, Classical electrodynamics, 3rd edn. (Wiley, New York, 1999)

    Google Scholar 

  7. D.J. Griffiths, Introduction to electrodynamics, 4th edn. (Pearson, Boston, 2013)

    Google Scholar 

  8. J. Chiaverini, B.R. Blakestad, J.W. Britton, J.D. Jost, C. Langer, D.G. Leibfried, R. Ozeri, D.J. Wineland, Surface-electrode architecture for ion-trap quantum information processing. Quantum Inf Comput 5, 419–439 (2005)

    Google Scholar 

  9. D. Leibfried, R. Ozeri, D. Wineland, Surface-electrode architecture for ion-trap quantum information processing. Quantum Information and Computation 5(6), 419–439 (2005)

    Google Scholar 

  10. S. Seidelin, J. Chiaverini, R. Reichle, J.J. Bollinger, D. Leibfried, J. Britton, J. Wesenberg, R. Blakestad, R. Epstein, D. Hume et al., Microfabricated surface-electrode ion trap for scalable quantum information processing. Physical review letters 96(25), 253003 (2006)

    Google Scholar 

  11. N. Daniilidis, S. Narayanan, S.A. Möller, R. Clark, T.E. Lee, P.J. Leek, A. Wallraff, S. Schulz, F. Schmidt-Kaler, H. Häffner, Fabrication and heating rate study of microscopic surface electrode ion traps. New Journal of Physics 13(1), 013032 (2011)

    Google Scholar 

  12. T.H. Kim, P.F. Herskind, I.L. Chuang, Surface-electrode ion trap with integrated light source. Applied Physics Letters 98(21), 214103 (2011)

    Google Scholar 

  13. S. Hong, M. Lee, Y.-D. Kwon, T. Kim, et al., “Experimental methods for trapping ions using microfabricated surface ion traps,” JoVE (Journal of Visualized Experiments), no. 126, p. e56060, (2017)

  14. A. Mokhberi, R. Schmied, S. Willitsch, Optimised surface-electrode ion-trap junctions for experiments with cold molecular ions. New Journal of Physics 19(4), 043023 (2017)

    Google Scholar 

  15. J. Tao, N.P. Chew, L. Guidoni, Y.D. Lim, P. Zhao, C.S. Tan, “Fabrication and characterization of surface electrode ion trap for quantum computing,” In: 2018 IEEE 20th Electronics Packaging Technology Conference (EPTC), pp. 363–366, IEEE, (2018)

  16. M. House, Analytic model for electrostatic fields in surface-electrode ion traps. Physical Review A 78(3), 033402 (2008)

    Google Scholar 

  17. J.H. Wesenberg, Electrostatics of surface-electrode ion traps. Physical Review A 78(6), 063410 (2008)

    Google Scholar 

  18. R. Schmied, Electrostatics of gapped and finite surface electrodes. New Journal of Physics 12(2), 023038 (2010)

    Google Scholar 

  19. M.H. Oliveira, J.A. Miranda, Biot-savart-like law in electrostatics. European Journal of Physics 22(1), 31 (2001). https://doi.org/10.1088/0143-0807/22/1/304

    Google Scholar 

  20. G.H. Shortley, R. Weller, The numerical solution of laplace’s equation. Journal of Applied Physics 9(5), 334–348 (1938). https://doi.org/10.1063/1.1710426

    Google Scholar 

  21. R. Rangogni, Numerical solution of the generalized laplace equation by coupling the boundary element method and the perturbation method. Applied Mathematical Modelling 10(4), 266–270 (1986). https://doi.org/10.1016/0307-904X(86)90057-0

    Google Scholar 

  22. L. Gray, “Program for solving the 3-dimensional laplace equation via the boundary element method.[d3lapl],” tech. rep., Oak Ridge National Lab., TN (USA), (1986)

  23. H. Li, Finite element analysis for the axisymmetric laplace operator on polygonal domains. Journal of computational and applied mathematics 235(17), 5155–5176 (2011). https://doi.org/10.1016/j.cam.2011.05.003

    Google Scholar 

  24. S. González-Martínez, J. Castillo-Torres, J. Mendoza-Santos, R. Zamorano-Ulloa, Novel method for detecting weak magnetic fields at low frequencies. Review of scientific instruments 76(6), 064701 (2005)

    Google Scholar 

  25. M.N. Sadiku, Elements of electromagnetics (Oxford University Press, 2014)

  26. L. Eyges, The classical electromagnetic field (Dover, New York, 1980)

    Google Scholar 

  27. J. Vanderlinde, Classical electromagnetic theory, vol. 145 (Springer Science & Business Media, 2006)

  28. M. Abramowitz, I.A. Stegun, Handbook of mathematical functions: with formulas, graphs, and mathematical tables, vol. 55 (Courier Corporation, 1965)

  29. M.W. Garrett, Calculation of fields, forces, and mutual inductances of current systems by elliptic integrals. Journal of Applied Physics 34(9), 2567–2573 (1963). https://doi.org/10.1063/1.1729771

    Google Scholar 

  30. J.C. Simpson, J.E. Lane, C.D. Immer, R.C. Youngquist, “Simple analytic expressions for the magnetic field of a circular current loop,” (2001). https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010038494.pdf

  31. B. Radon, Sviluppi in serie degli integrali ellittici: Atti della dei lincei memorie serie 8 (Accademia nazionale dei Lincei, 1950)

  32. Wolfram Research Inc. Mathematica. (Wolfram Research Inc., Champaign, IL, 2012)

  33. P. Brezillon, J.-F. Staub, A.-M. Perault-Staub, G. Milhaud, Numerical estimation of the first order derivative: approximate evaluation of an optimal step. Computers & Mathematics with Applications 7(4), 333–347 (1981). https://doi.org/10.1016/0898-1221(81)90062-6

    Google Scholar 

  34. R.L. Burden, J.D. Faires, A.C. Reynolds, Numerical analysis (Brooks/cole, Pacific Grove, CA, 2001), pp. 174–182

    Google Scholar 

  35. W. Squire, G. Trapp, Using complex variables to estimate derivatives of real functions. SIAM review 40(1), 110–112 (1998). https://doi.org/10.1137/S003614459631241X

    Google Scholar 

Download references

Acknowledgements

This work was supported by Vicerrectoría de investigación, Universidad ECCI. Robert Salazar also thanks Fundación Colfuturo and Departamento de Ciencias Básicas, Universidad ECCI. Camilo Bayona acknowledges the postdoctoral fellowship received from Departamento Administrativo de Ciencia, Tecnología e Innovación - Colciencias.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Salazar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salazar, R., Bayona-Roa, C. & Solís-Chaves, J.S. Electrostatic field of angular-dependent surface electrodes. Eur. Phys. J. Plus 135, 93 (2020). https://doi.org/10.1140/epjp/s13360-019-00090-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-019-00090-3

Navigation