Skip to main content
Log in

The study of discrete cavity soliton lasers in presence of population inversion

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The existence, dynamics and switching of bright and dark spatial soliton in coupled active cavities array above lasing threshold in presence of population inversion are studied here. Different types of discrete cavity soliton lasers are introduced and their stability is analyzed, together with the comparison of population inversion effects on bright and dark solitons. The effects of injection time, intensity, width, and phase difference of switching beam are analyzed to perform a successful ON/OFF switching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Chen, T. Lv, A. Zheng, Y. Han, Controlled switching of discrete solitons in periodically poled lithium niobate waveguide arrays. Appl. Opt. 25(8), 1663 (2013)

    Article  ADS  Google Scholar 

  2. T.R.O. Melvina, A.R. Champneysa, P.G. Kevrekidisb, J. Cuevasc, Travelling solitary waves in the discrete Schrodinger equation with saturable nonlinearity: existence, stability and dynamics. Elsevier Phys. D 237, 551–567 (2008)

    Article  MathSciNet  Google Scholar 

  3. K. Staliunas, O. Egorov, Y.S. Kivshar, F. Lederer, Bloch cavity solitons in nonlinear resonators with intracavity photonic crystals. Phys. Rev. Lett. 101, 153903 (2008)

    Article  ADS  Google Scholar 

  4. O.A. Egorov, F. Lederer, Spontaneously walking discrete cavity solitons. Opt. Lett. 38(7), 1010 (2013)

    Article  ADS  Google Scholar 

  5. O. Egorov, F. Lederer, K. Staliunas, Subdiffractive discrete cavity solitons. Opt. Lett. 32(15), 2106 (2007)

    Article  ADS  Google Scholar 

  6. B.H. Khiaban, K.M. Aghdami, R. Kheradmand, Switchable discrete cavity solitons in 2D waveguide structure with defect. Eur. Phys. J. D 69, 53 (2015)

    Article  ADS  Google Scholar 

  7. K.M. Aghdami, M. Golshani, R. Kheradmand, Two-dimensional discrete cavity solitons: switching and all-optical gates. IEEE Photonics J. 4(4), 1147 (2012)

    Article  ADS  Google Scholar 

  8. A. Kanshu, C.E. Ruter, D. Kip, J. Cuevas, P.G. Kevrekidis, Dark lattice solitons in one-dimensional waveguide arrays with defocusing saturable nonlinearity and alternating couplings. Eur. Phys. J. D 66, 182 (2012)

    Article  ADS  Google Scholar 

  9. A. Motahharynia, K.M. Aghdami, R. Kheradmand, Modeling of population inversion in coupled active lasing cavities: aspects of the stability analysis. Chaos Solitons Fractals 118, 106–111 (2019)

    Article  ADS  Google Scholar 

  10. K.J. Vahala, X. Yi, Q. Yang, Physics and applications of counter propagating solitons in microcavities. In: SPIE LASE (California, San Francisco, 2019)

  11. B. Apter, N. Lapshina, A. Handelman, G. Rosenman, Light waveguiding in bioinspired peptide nanostructures. J. Pep. Sci. 25, 3164 (2019)

    Article  Google Scholar 

  12. M. Eslami, S.Z. Gandomani, F. Prati, H. Tajalli, R. Kheradmand, Ultra low-energy switch based on a cavity soliton laser with pump modulation. J. Opt. 19, 015502 (2017)

    Article  ADS  Google Scholar 

  13. O. Egorov, U. Peschel, F. Lederer, Mobility of discrete cavity solitons. Phys. Rev. E 72, 066603 (2005)

    Article  ADS  Google Scholar 

  14. O. Egorov, U. Peschel, and F. Lederer, Discrete quadratic cavity solitons. Phys. Rev. E 71, 056612 (2005). https://doi.org/10.1103/PhysRevE.71.056612

    Article  ADS  Google Scholar 

  15. M. Bache, F. Prati, G. Tissoni, R. Kheradmand, L.A. Lugiato, I. Protsenko, M. Brambilla, Cavity soliton laser based on VCSEL with saturable absorber. Appl. Phys. 81, 913–920 (2005)

    Article  Google Scholar 

  16. J.E. Prilepsky, A.V. Yulin, M. Johansson, S.A. Derevyanko, Discrete solitons in coupled active lasing cavities. OSA, 2012

  17. M. Golshani, S. Weimann, Kh. Jafari, M. Khazaei Nezhad, A. Langari, A. R. Bahrampour, T. Eichelkraut, S. M. Mahdavi, and A. Szameit Impact of loss on the wave dynamics in photonic waveguide lattices. arXiv[physics.optics] 1408.5740v2, 2014

  18. Z. Shi, J. Xue, Z. Xing, Y. Li, H. Li, Discrete multipole dark solitons in saturable nonlinearity media with parity-time symmetric lattices. Eur. Phys. J. Plus 132, 79 (2017)

    Article  Google Scholar 

  19. A.V. Yulin, A. Aladyshkina, A.S. Shalin, Motion of dissipative optical fronts under the action of an oscillating pump. Phys. Rev. E 94, 022205 (2016)

    Article  ADS  Google Scholar 

  20. A.G. Ardakani, Wave propagation through photonic waveguide lattices in the presence of optical gain and loss. Appl. Opt. 55(13), 3589 (2016)

    Article  ADS  Google Scholar 

  21. R. Kheradmand, K.M. Aghdami, K. Talouneh, The switching of dark and bright soliton in 1D discrete cavity laser. Chaos Solitons Fractals 91, 511–515 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  22. Oleg A. Egorov, Falk Lederer, Yuri S. Kivshar, How does an inclined holding beam affect discrete modulational instability and solitons in nonlinear cavities? OSA 15(7), 4149 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Kheradmand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motahharynia, A., Aghdami, K.M. & Kheradmand, R. The study of discrete cavity soliton lasers in presence of population inversion. Eur. Phys. J. Plus 135, 2 (2020). https://doi.org/10.1140/epjp/s13360-019-00017-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-019-00017-y

Navigation