Skip to main content
Log in

Investigating tunable bandwidth cavity via three-level atomic systems

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

We propose a scheme for intracavity electromagnetically induced transparency and white light cavity via three-level Ladder-type Rb atoms. The system is driven by coherent and incoherent fields. Due to the position dependent atom-field interaction, the tunable optical susceptibility of the probe field can be achieved. By using an incoherent pump field and choosing proper parameters, one can control dispersion behavior of the probe field. In weak probe field limit, cavity bandwidth narrowing and broadening could be controlled via atomic systems in different conditions. Assuming the intracavity electromagnetic-induced transparency and the white light cavity conditions, it’s possible to control the susceptibility to satisfy the resonance condition over a wide frequency range. Tuning and controlling bandwidth of the optical cavity may find interesting applications in investigating cavity-QED phenomena and designing novel all-optical devices such as optical switches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.J. Boller, A. Imamoglu, S.E. Harris, Phys. Rev. Lett. 66, 2593 (1991)

    Article  ADS  Google Scholar 

  2. Y. Niu, S. Gong, Phys. Rev. A 73, 053811 (2006)

    Article  ADS  Google Scholar 

  3. A. Krishna, K. Pandey, A. Wasan, V. Natarajan, Europhys. Lett. 72, 221 (2005)

    Article  ADS  Google Scholar 

  4. J. Wang, H. Liu, B. Yang, J. He, J. Wang, Meas. Sci. Technol. 25, 035501 (2014)

    Article  ADS  Google Scholar 

  5. D. Das, V. Natarajan, Europhys. Lett. 72, 740 (2005)

    Article  ADS  Google Scholar 

  6. T. Naseri, S.H. Asadpour, R. Sadighi-Bonabi, J. Opt. Soc. Am. B 30, 641 (2013)

    Article  ADS  Google Scholar 

  7. X.-M. Hu, G.-L. Cheng, J.-H. Zou, X. Li, D. Du, Phys. Rev. A 72, 023803 (2005)

    Article  ADS  Google Scholar 

  8. S.-M. Ma, H. Xu, B.-S. Ham, Opt. Express 17, 14902 (2009)

    Article  ADS  Google Scholar 

  9. R. Sadighi-Bonabi, T. Naseri, M. Navadeh-Toupchi, Appl. Opt. 54, 368 (2015)

    Article  ADS  Google Scholar 

  10. T. Naseri, R. Sadighi-Bonabi, J. Opt. Soc. Am. B 31, 2430 (2014)

    Article  ADS  Google Scholar 

  11. T. Naseri, Superlattices Microstruct. 94, 187 (2016)

    Article  ADS  Google Scholar 

  12. T. Naseri, R. Moradi, Superlattices Microstruct. 101, 592 (2017)

    Article  ADS  Google Scholar 

  13. W. Leoski, R. Tana, Phys. Rev. A 49, R20 (1994)

    Article  ADS  Google Scholar 

  14. A. Imamolu, H. Schmidt, G. Woods, M. Deutsch, Phys. Rev. Lett. 79, 1467 (1997)

    Article  ADS  Google Scholar 

  15. W. Leoski, A. Miranowicz, J. Opt. B 6, S37 (2004)

    Article  ADS  Google Scholar 

  16. M.K. Olsen, Phys. Rev. A 92, 033627 (2015)

    Article  ADS  Google Scholar 

  17. J.K. Kalaga, W. Leoski, R. Szczniak, Quantum Inf. Process. 16, 265 (2017)

    Article  ADS  Google Scholar 

  18. M.D. Lukin, M. Fleischhauer, M.O. Scully, V.L. Velichansky, Opt. Lett. 23, 295 (1998)

    Article  ADS  Google Scholar 

  19. M. Mücke, E. Figueroa, J. Bochmann, C. Hahn, K. Murr, S. Ritter, C.J. Villas-Boas, G. Rempe, Nature 465, 755 (2010)

    Article  ADS  Google Scholar 

  20. F.L. Kien, K. Hakuta, Phys. Rev. A 79, 043813 (2009)

    Article  ADS  Google Scholar 

  21. M. Albert, A. Dantan, M. Drewsen, Nat. Photon. 5, 633 (2011)

    Article  ADS  Google Scholar 

  22. O. Kotlicki, J. Scheuer, Opt. Lett. 39, 6624 (2014)

    Article  ADS  Google Scholar 

  23. J.I. Thorpe, K. Numata, J. Livas, Opt. Express 16, 15980 (2008)

    Article  ADS  Google Scholar 

  24. J. Xu, M. Al-Amri, Y. Yang, S. Zhu, M.S. Zubairy, Phys. Rev. A 86, 033828 (2012)

    Article  ADS  Google Scholar 

  25. A. Othman, D. Yevick, M. Al-Amri, Phys. Rev. A 97, 043816 (2018)

    Article  ADS  Google Scholar 

  26. H.N. Yum, M. Salit, J. Yablon, K. Salit, Y. Wang, M.S. Shahriar, Opt. Express 18, 17658 (2010)

    Article  ADS  Google Scholar 

  27. O. Kotlicki, J. Scheuer, M.S. Shahriar, Opt. Express 20, 28234 (2012)

    Article  ADS  Google Scholar 

  28. A. Wichta, K. Danzmanna, M. Fleischhauer, M. Scullyc, G. Mullera, R.H. Rinkleff, Opt. Commun. 134, 431 (1997)

    Article  ADS  Google Scholar 

  29. M. Salita, G.S. Patia, K. Salit, M.S. Shahriar, J. Mod. Opt. 54, 2425 (2007)

    Article  ADS  Google Scholar 

  30. G. Muller, M. Muller, A. Wicht, R.H. Rinkleff, K. Danzmann, Phys. Rev. A 56, 2385 (1997)

    Article  ADS  Google Scholar 

  31. H. Wang, D.J. Goorskey, W.H. Burkett, M. Xiao, Opt. Lett. 25, 1732 (2000)

    Article  ADS  Google Scholar 

  32. H. Wu, J. Gea-Banacloche, M. Xiao, Phys. Rev. Lett. 100, 173602 (2008)

    Article  ADS  Google Scholar 

  33. F.L. Kien, K. Hakuta, Phys. Rev. A 79, 043813 (2009)

    Article  ADS  Google Scholar 

  34. J. Sheng, H. Wu, M. Mumba, J. Gea-Banacloche, M. Xiao, Phys. Rev. A 83, 023829 (2011)

    Article  ADS  Google Scholar 

  35. R.H. Rinkleff, A. Wicht, Phys. Scr. 118, 85 (2005)

    Article  Google Scholar 

  36. G.S. Pati, M. Messall, K. Salit, M.S. Shahriar, Phys. Rev. Lett. 99, 133601 (2007)

    Article  ADS  Google Scholar 

  37. G.S. Pati, M. Salit, K. Salit, M.S. Shahriar, Opt. Commun. 281, 4931 (2008)

    Article  ADS  Google Scholar 

  38. R. Fleischhaker, J. Evers, Phys. Rev. A 78, 0518021 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tayebeh Naseri.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naseri, T., Hatami-Mehr, M. Investigating tunable bandwidth cavity via three-level atomic systems. Eur. Phys. J. Plus 134, 529 (2019). https://doi.org/10.1140/epjp/i2019-12899-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12899-y

Navigation