Skip to main content
Log in

A model for magnetic hysteresis

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper a new mathematical model of magnetic hysteresis is presented. In this model, firstly, it is considered that a hypothetical ferromagnetic material is formed by identical magnetic domains, with uniaxial anisotropy; at the begining it is considered that the magnetization process is realized by the rotation of the magnetic moments from each magnetic domain when an external magnetic field, \( \vec{H}\), is applied. The causes that oppose during the magnetization process are equivalent replaced by a fictional magnetic field \( \vec{H}_{a}\). The equation for magnetization of a magnetic domain is obtained from the condition of rotational equilibrium of magnetic moment between torques of \( \vec{H}\) and \( \vec{H}_{a}\) fields. The model gives, in the case of a magnetic domain, an analytical function for the magnetization which depends on the applied magnetic field, M(H); the graph of this function is the major hysteresis loop. Then, the real aspects during the magnetization processes of crystalline and polycrystalline magnetic materials are considered and the equations for major magnetization curves are deducted. The calculated curves were found for the experimental major magnetization curves of several categories of polycrystalline ferromagnetic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.C. Stoner, E.P. Wohlfarth, Philos. Trans. R. Soc. A 240, 599 (1948)

    Article  ADS  Google Scholar 

  2. F. Preisach, Z. Phys. B 94, 277 (1935)

    Article  Google Scholar 

  3. A. Globus, Universal hysteresis loop for soft ferrimagnetic material, in Proceedings of the EPS, Conference on Soft Magnetic Material 2 (EPS, 1975) p. 233

  4. A. Globus, Universal hysteresis loop for ferrimagnetic polycrystals, in Proceedings of the International Conference on Magnetism (Amsterdam, Netherlands, 1976) pp. 943--944

  5. D.C. Jiles, D.L. Atherton, J. Appl. Phys. 55, 2115 (1984)

    Article  ADS  Google Scholar 

  6. M.L. Hodgdon, IEEE Trans. Magn. 24, 3120 (1988)

    Article  ADS  Google Scholar 

  7. H. Hauser, J. Appl. Phys. 77, 2625 (1995)

    Article  ADS  Google Scholar 

  8. I. Mayergoyz, Mathematical Models of Hysteresis (Springer Verlag, New York, 1991)

  9. Iványi, Hysteresis Models in Electromagnetic Computation (Akadémiai Kiadó, Budapest, 1997)

  10. F. Liorzou, B. Phelps, D.L. Atherton, IEEE Trans. Magn. 36, 418 (2000)

    Article  ADS  Google Scholar 

  11. E. Della Torre, Magnetic Hysteresis (IEEE Press, Piscataway, 1999)

    Book  Google Scholar 

  12. E. Della Torre, Physica B 343, 1 (2004)

    Article  ADS  Google Scholar 

  13. G. Bertotti, Hysteresis in Magnetism (Academic Press, Boston, 1998)

    Chapter  Google Scholar 

  14. D.C. Jiles, J. Magn. & Magn. Mater. 61, 48 (1986)

    Article  ADS  Google Scholar 

  15. D. Atherton, IEEE Trans. Magn. 26, 3059 (1990)

    Article  ADS  Google Scholar 

  16. M.J. Sablik, D.C. Jiles, IEEE Trans. Magn. 29, 2113 (1993)

    Article  ADS  Google Scholar 

  17. C. Korman, I. Mayergoyz, IEEE Trans. Magn. 32, 4204 (1996)

    Article  ADS  Google Scholar 

  18. P. Andrei, O. Caltun, A. Stancu, IEEE Trans. Magn. 34, 231 (1998)

    Article  ADS  Google Scholar 

  19. M.J. Dapino, R.C. Smith, L.E. Faidley, A.B. Flatau, J. Intell. Mater. Syst. Struct. 11, 134 (2000)

    Article  Google Scholar 

  20. C. Tannous, J. Gieraltowski, Physica B 403, 3563 (2008)

    Article  ADS  Google Scholar 

  21. J. Rivas, J. Zamarro, E. Martin, C. Pereira, IEEE Trans. Magn. 17, 1498 (1981)

    Article  ADS  Google Scholar 

  22. Z. Włodarski, Physica B 373, 323 (2006)

    Article  ADS  Google Scholar 

  23. H. Hauser et al., J. Magn. & Magn. Mater. 300, 273 (2006)

    Article  ADS  Google Scholar 

  24. János Füzi, Physica B 372, 393 (2006)

    Article  ADS  Google Scholar 

  25. J. Takacs, G.Y. Kovacs, L.K. Varga, Physica B 403, 2293 (2008)

    Article  ADS  Google Scholar 

  26. A.M. Milovanovic, B.M. Koprivica, Electromagnetics 35, 155 (2015)

    Article  Google Scholar 

  27. Jeno Takacs, Compel 37, 1131 (2018)

    Article  Google Scholar 

  28. P. Weiss, J. Phys. 6, 661 (1907)

    Google Scholar 

  29. B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials (Wiley-IEEE Press, 2009)

  30. W. Heisenberg, Z. Phys. 49, 619 (1928)

    Article  ADS  Google Scholar 

  31. J. Takacs, Compel 20, 1002 (2001)

    Article  Google Scholar 

  32. F. Fiorillo, J. Magn. & Magn. Mater. 242--245, 77 (2002)

    Article  ADS  Google Scholar 

  33. F. Fiorillo, C. Appino, M. Pasquale, The Science of Hysteresis, edited by G. Bertotti, I. Mayergoyz, Vol. III, Hysteresis in Magnetic Materials (Academic Press, 2006) chapt. 1

  34. G. Bertotti, F. Fiorillo, M. Pasquale, IEEE Trans. Magn. 29, 3469 (1993)

    Article  Google Scholar 

  35. P. Marketos, A.J. Moses, J. Electr. Eng. 61, 123 (2010)

    Google Scholar 

  36. Z. Zhao, F. Liu, S.L. Ho, W.N. Fu, W. Yan, IEEE Trans. Magn. 45, 3958 (2009)

    Article  ADS  Google Scholar 

  37. M.F. de Campos, F.A. Sampaio da Silva, E.A. Perigo, J.A. de Castro, J. Magn. & Magn. Mater. 345, 147 (2013)

    Article  ADS  Google Scholar 

  38. S. Chikazumi, Physics of Ferromagnetism, second ed. (Clarendon, Oxford, 1997)

  39. N.C. Pop, O.F. Caltun, Pollack Period. 5, 155 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicuşor Cristian Pop.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pop, N.C. A model for magnetic hysteresis. Eur. Phys. J. Plus 134, 567 (2019). https://doi.org/10.1140/epjp/i2019-12893-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12893-5

Navigation