Skip to main content
Log in

Vibration analysis of graphene sheets resting on Winkler/Pasternak foundation: A multiscale approach

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In the present article, an atomistic-continuum multiscale model is developed to study the free-vibration response of single-layered graphene sheets (SLGSs) embedded in an elastic medium based upon the higher-order Cauchy-Born (HCB) rule. In order to take both transverse shear stress and normal pressure into account, the elastic foundation is considered to be of Winkler-Pasternak type. The governing equations are derived within a variational formulation using a newly proposed method called Variational Differential Quadrature (VDQ). Using the VDQ approach together with the Generalized Differential Quadrature (GDQ) technique, the variational form of the governing equation is discretized in a computationally efficient manner. Finally, a generalized eigenvalue problem is solved to calculate the frequencies of SLGSs. The convergence and correctness of the presented numerical solutions are examined firstly. Then, a number of numerical examples are given to study the effects of boundary conditions, elastic medium and arrangement of atoms on the vibrational response of SLGSs. The present model does not involve any additional phenomenological input, and it considers size effect and material nonlinearity due to atomic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A. Firsov, Science 306, 666 (2004)

    ADS  Google Scholar 

  2. R. Ansari, S. Ajori, B. Motevalli, Superlattices Microstruct. 51, 274 (2012)

    ADS  Google Scholar 

  3. R. Ansari, B. Motevalli, A. Montazeri, S. Ajori, Solid State Commun. 151, 1141 (2011)

    ADS  Google Scholar 

  4. K. Lin, Q. Yuan, Y.P. Zhao, Comput. Mater. Sci. 133, 99 (2017)

    Google Scholar 

  5. S.H. Madani, M.H. Sabour, M. Fadaee, J. Molec. Graphics Model. 79, 264 (2018)

    Google Scholar 

  6. S. Krishnan, R. Vadapoo, K.E. Riley, J.P. Velev, Phys. Rev. B 84, 165408 (2011)

    ADS  Google Scholar 

  7. M. Mirnezhad, R. Ansari, M. Seifi, H. Rouhi, M. Faghihnasiri, Solid State Commun. 152, 842 (2012)

    ADS  Google Scholar 

  8. R. Ansari, M. Mirnezhad, H. Rouhi, Solid State Commun. 201, 1 (2015)

    ADS  Google Scholar 

  9. Z. Liu, Y. Zhang, B. Wang, H. Cheng, X. Cheng, Z. Huang, Appl. Surf. Sci. 427, 547 (2018)

    ADS  Google Scholar 

  10. A.C. Eringen, Int. J. Eng. Sci. 10, 1 (1972)

    MathSciNet  Google Scholar 

  11. A.C. Eringen, D.G.B. Edelen, Int. J. Eng. Sci. 10, 233 (1972)

    Google Scholar 

  12. A.C. Eringen, J. Appl. Phys. 54, 4703 (1983)

    ADS  Google Scholar 

  13. M.E. Gurtin, A.I. Murdoch, Arch. Rat. Mech. Anal. 57, 291 (1975)

    Google Scholar 

  14. M.E. Gurtin, A.I. Murdoch, Int. J. Solids Struct. 14, 431 (1978)

    Google Scholar 

  15. H. Rouhi, R. Ansari, Nano 7, 1250018 (2012)

    Google Scholar 

  16. R. Ansari, A. Shahabodini, H. Rouhi, Curr. Appl. Phys. 15, 1062 (2015)

    ADS  Google Scholar 

  17. H.S. Shen, Y.M. Xu, C.L. Zhang, Comput. Methods Appl. Mech. Eng. 267, 458 (2013)

    ADS  Google Scholar 

  18. R. Ansari, H. Rouhi, S. Sahmani, Int. J. Mech. Sci. 53, 786 (2011)

    Google Scholar 

  19. Y. Liang, Q. Han, Eur. J. Mech. A/Solids 45, 153 (2014)

    ADS  MathSciNet  Google Scholar 

  20. R. Ansari, H. Rouhi, J. Eng. Mater. Technol. 134, 011008 (2012)

    Google Scholar 

  21. R. Ansari, H. Rouhi, Int. J. Comput. Methods Eng. Sci. Mech. 14, 40 (2013)

    MathSciNet  Google Scholar 

  22. F. Ebrahimi, P. Haghi, Acta Mech. Solida Sin. 30, 647 (2017)

    Google Scholar 

  23. M.A. Eltaher, M.E. Khater, S.A. Emam, Appl. Math. Model. 40, 4109 (2016)

    MathSciNet  Google Scholar 

  24. K.F. Wang, B.L. Wang, T. Kitamura, Acta Mech. Sin. 32, 83 (2016)

    ADS  MathSciNet  Google Scholar 

  25. M. Faraji Oskouie, R. Ansari, H. Rouhi, Microsyst. Technol. 24, 2775 (2018)

    Google Scholar 

  26. Z.B. Shen, R.W. Jiang, L. Zhang, G.J. Tang, Acta Mech. Solida Sin. 31, 94 (2018)

    Google Scholar 

  27. R.C. Batra, S.S. Gupta, J. Appl. Mech. 75, 061010 (2008)

    ADS  Google Scholar 

  28. P. Zhang, Y. Huang, P.H. Geubelle, P.A. Klein, K.C. Hwang, Int. J. Solid Struct. 39, 3893 (2002)

    Google Scholar 

  29. M. Arroyo, T. Belytschko, J. Mech. Phys. Solids 50, 1941 (2002)

    ADS  MathSciNet  Google Scholar 

  30. M. Arroyo, T. Belytschko, Phys. Rev. B 69, 115415 (2004)

    ADS  Google Scholar 

  31. X. Guo, J.B. Wang, H.W. Zhang, Int. J. Solids Struct. 43, 1276 (2006)

    Google Scholar 

  32. H. Stefan, Comput. Methods Appl. Mech. Eng. 270, 220 (2014)

    Google Scholar 

  33. Y. Sun, K.M. Liew, Comput. Mater. Sci. 42, 444 (2008)

    Google Scholar 

  34. Y. Sun, K.M. Liew, Comput. Methods Appl. Mech. Eng. 197, 3001 (2008)

    ADS  Google Scholar 

  35. Y. Sun, K.M. Liew, Int. J. Numer. Methods Eng. 75, 1238 (2008)

    Google Scholar 

  36. S. Singh, B.P. Patel, Compos. Struct. 119, 412 (2015)

    Google Scholar 

  37. S. Singh, B.P. Patel, Eur. J. Mech. A/Solids 59, 165 (2016)

    ADS  MathSciNet  Google Scholar 

  38. S. Singh, B.P. Patel, Int. J. Non-Linear Mech. 76, 112 (2015)

    ADS  Google Scholar 

  39. S. Singh, B.P. Patel, Composites Part B 136, 81 (2018)

    Google Scholar 

  40. S. Singh, B.P. Patel, Comput. Struct. 195, 126 (2018)

    Google Scholar 

  41. X. Wang, X. Guo, J. Comput. Theor. Nanosci. 10, 154 (2013)

    Google Scholar 

  42. A. Shahabodini, R. Ansari, M. Darvizeh, J. Ultrafine Grained Nanostruct. Mater. 50, 60 (2017)

    Google Scholar 

  43. M. Faghih Shojaei, R. Ansari, Appl. Math. Model. 49, 705 (2017)

    MathSciNet  Google Scholar 

  44. A. Shahabodini, R. Ansari, M. Darvizeh, Compos. Struct. 165, 25 (2017)

    Google Scholar 

  45. A. Shahabodini, R. Ansari, M. Darvizeh, Compos. Struct. 185, 728 (2018)

    Google Scholar 

  46. J. Tersoff, Phys. Rev. B 37, 6991 (1988)

    ADS  Google Scholar 

  47. D.W. Brenner, Phys. Rev. B 42, 9458 (1990)

    ADS  Google Scholar 

  48. R. Ansari, A. Shahabodini, M. Faghih Shojaei, Physica E 76, 70 (2016)

    ADS  Google Scholar 

  49. P. Malekzadeh, M. Shojaee, Compos. Struct. 95, 443 (2013)

    Google Scholar 

  50. P. Malekzadeh, Compos. Struct. 89, 367 (2009)

    Google Scholar 

  51. A. Alibeigloo, A.M. Kani, Appl. Math. Model. 34, 4123 (2010)

    MathSciNet  Google Scholar 

  52. R. Ansari, R. Gholami, M. Faghih Shojaei, V. Mohammadi, S. Sahmani, Compos. Struct. 100, 385 (2013)

    Google Scholar 

  53. C. Shu, Differential Quadrature and its Application in Engineering (Springer, London, 2000)

    MATH  Google Scholar 

  54. R. Ansari, M. Faghih Shojaei, A. Shahabodini, M. Bazdid-Vahdati, Compos. Struct. 131, 753 (2015)

    Google Scholar 

  55. R. Ansari, A. Shahabodini, M. Faghih Shojaei, Compos. Struct. 139, 167 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ansari.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahabodini, A., Gholami, Y., Ansari, R. et al. Vibration analysis of graphene sheets resting on Winkler/Pasternak foundation: A multiscale approach. Eur. Phys. J. Plus 134, 510 (2019). https://doi.org/10.1140/epjp/i2019-12856-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12856-x

Navigation