Skip to main content
Log in

Thermosolutal convective instability of power-law fluid saturated porous layer with concentration based internal heat source and Soret effect

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The onset of double-diffusive convective instability in a horizontal porous layer saturated by a power-law fluid that is subjected to concentration based internal heat source and Soret effect is investigated. Both these physical processes have a significant influence on the concentration field in porous media. Here the fluid flow is induced by constant but different temperature and concentration maintained across the boundary planes. The basic flow considered is a uniform throughflow which is inclined with respect to the horizontal x -axis. Considering the heat source (\( \gamma\)) and Soret effect (Sr) results in a non-linear basic temperature and concentration profiles. The resulting eigenvalue system of coupled ordinary differential equations along with the boundary conditions is solved to explore the combined effect of internal heat source and Soret parameter on the instability of the power-law fluid. The instability of the base flow appears in the form of oblique rolls, which can be reduced to longitudinal rolls or transverse rolls. Stationary instability is seen for the longitudinal rolls. For transverse rolls, the onset of stationary and oscillatory convective instability depends on Lewis number, Péclet number, Soret parameter and presence of the concentration based internal heat source. It is also evident that \( \gamma\) = 0 and Sr = 0 are singularities for the basic temperature and concentration profiles. The limiting behavior of these parameters is also investigated for their linear stability. Both stationary and oscillatory convective instability corresponding to the pseudoplastic and dilatant fluids is discussed for the case of \( \gamma\rightarrow 0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.A. Nield, A. Bejan, Convection in Porous Media, Vol. 5 (Springer, 2017)

  2. A. Barletta, D.A. Nield, Phys. Fluids 23, 013102 (2011)

    Article  ADS  Google Scholar 

  3. L.S.d.B. Alves, A. Barletta, Int. J. Heat Mass Transfer 62, 495 (2013)

    Article  Google Scholar 

  4. M. Celli, A. Barletta, Int. J. Heat Mass Transfer 117, 1322 (2018)

    Article  Google Scholar 

  5. A. Barletta, L. Storesletten, Int. J. Heat Mass Transfer 99, 293 (2016)

    Article  Google Scholar 

  6. L.S.d.B. Alves, A. Barletta, Int. J. Therm. Sci. 94, 270 (2015)

    Article  Google Scholar 

  7. D.A. Nield, Transp. Porous Media 87, 121 (2011)

    Article  Google Scholar 

  8. A. Barletta, L.S.d.B. Alves, Int. J. Heat Mass Transfer 79, 759 (2014)

    Article  Google Scholar 

  9. M. Celli, A. Barletta, S. Longo, L. Chiapponi, V. Ciriello, V. Di Federico, A. Valiani, Transp. Porous Media 118, 449 (2017)

    Article  MathSciNet  Google Scholar 

  10. M. Pourjafar, K. Sadeghy, J. Non-Newtonian Fluid Mech. 230, 80 (2016)

    Article  MathSciNet  Google Scholar 

  11. P.H. Roberts, J. Fluid Mech. 30, 33 (1967)

    Article  ADS  Google Scholar 

  12. R.D. Gasser, M.S. Kazimi, J. Heat Transf. 98, 49 (1976)

    Article  Google Scholar 

  13. S.J. Rhee, V.K. Dhir, I. Catton, J. Heat Transf. 100, 78 (1978)

    Article  Google Scholar 

  14. M. Celli, P.V. Brandao, L.S.d.B. Alves, A. Barletta, Transp. Porous Media 112, 563 (2016)

    Article  MathSciNet  Google Scholar 

  15. A. Khalili, I.S. Shivakumara, Phys. Fluids 10, 315 (1998)

    Article  ADS  Google Scholar 

  16. D.A. Nield, A.V. Kuznetsov, Transp. Porous Media 98, 543 (2013)

    Article  MathSciNet  Google Scholar 

  17. D.A. Nield, A.V. Kuznetsov, Transp. Porous Media 100, 83 (2013)

    Article  MathSciNet  Google Scholar 

  18. S. Shalbaf, A. Noghrehabadi, M.R. Assari, A.D. Dezfuli, Acta Mech. 224, 1103 (2013)

    Article  MathSciNet  Google Scholar 

  19. D.A. Nield, A.V. Kuznetsov, Transp. Porous Media 111, 541 (2016)

    Article  MathSciNet  Google Scholar 

  20. A. Barletta, M. Celli, Int. J. Heat Mass Transfer 111, 1063 (2017)

    Article  Google Scholar 

  21. A.A. Hill, Proc. R. Soc. London A 461, 561 (2005)

    Article  ADS  Google Scholar 

  22. N. Deepika, P.A.L. Narayana, Transp. Porous Media 111, 751 (2016)

    Article  MathSciNet  Google Scholar 

  23. P.A.L. Narayana, P.V.S.N. Murthy, R.S.R. Gorla, J. Fluid Mech. 612, 1 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  24. K. Roy, P.V.S.N. Murthy, Int. J. Heat Mass Transfer 91, 700 (2015)

    Article  Google Scholar 

  25. S. Wang, W. Tan, Int. J. Heat Fluid Flow 32, 88 (2011)

    Article  Google Scholar 

  26. J.K. Platten, J. Appl. Mech. 73, 5 (2006)

    Article  ADS  Google Scholar 

  27. M. Karimi-Fard, M.C. Charrier-Mojtabi, A. Mojtabi, Phys. Fluids 11, 1346 (1999)

    Article  ADS  Google Scholar 

  28. A. Barletta, D.A. Nield, Int. J. Heat Mass Transfer 54, 1641 (2011)

    Article  Google Scholar 

  29. W.R. Inc, Mathematica, Version 9.0 (Champaign, IL, 2012)

  30. N. Deepika, Transp. Porous Media 121, 93 (2018)

    Article  MathSciNet  Google Scholar 

  31. R.P. Chhabra, J.F. Richardson, Non-Newtonian Flow and Applied Rheology: Engineering Applications (Butterworth-Heinemann, 2011)

  32. R.G. Green, R.G. Griskey, Trans. Soc. Rheol. 12, 13 (1968)

    Article  Google Scholar 

  33. M.S. Malashetty, B.S. Bharati, Phys. Fluids 23, 064109 (2011)

    Article  ADS  Google Scholar 

  34. C.W. Horton, F.T. Rogers Jr., J. Appl. Phys. 16, 367 (1945)

    Article  ADS  MathSciNet  Google Scholar 

  35. E.R. Lapwood, Math. Proc. Cambridge Philos. Soc. 44, 508 (1948)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seema Kumari.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, S., Murthy, P.V.S.N. Thermosolutal convective instability of power-law fluid saturated porous layer with concentration based internal heat source and Soret effect. Eur. Phys. J. Plus 134, 474 (2019). https://doi.org/10.1140/epjp/i2019-12817-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12817-5

Navigation