Skip to main content
Log in

Effect of variable magnetic field on the flow between two squeezing plates

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper, a viscous fluid is considered between two horizontal and infinite squeezing plates. The unsteady equations of mass and momentum conservation is coupled with the variable magnetic field and energy equations. The governing system of equations along with entropy generation is solved by the Parametric Continuation Method (PCM). A parametric investigation is plotted through graphs for the velocity field and magnetic field components. Also, the entropy generation due to heat transfer, magnetic field and fluid friction is studied through graphs and tables. It is derived that an increase in magnetic Reynolds number, squeezing number or Hartman number increases the fluid temperature. The magnetic field components are also increasing with increase in magnetic flux. It is also derived that an increase in the rate of momentum diffusion increases the entropy generation and Bejan number due to maximum disorderness of molecules near the plates. Applications of the study include automotive magneto-rheological shock absorbers, novel aircraft landing gear systems, heating-up or cooling processes, biological sensor systems and biological prosthetic etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Stefan, Sitzungsber. kais. Akad. Wiss. Math. Naturwiss. Kl. 69, 713 (1874)

    Google Scholar 

  2. E.O. Salbu, J. Basic Eng. 86, 355 (1964)

    Article  Google Scholar 

  3. J.F. Thorpe, W.A. Shaw, Developments in Theoretical and Applied Mechanics (Pergamon Press, Oxford, 1967)

  4. D.C. Kuzma, Appl. Sci. Res. 18, 15 (1968)

    Article  Google Scholar 

  5. P.S. Gupta, A.S. Gupta, Wear 45, 177 (1977)

    Article  Google Scholar 

  6. R.L. Verma, Wear 72, 89 (1981)

    Article  Google Scholar 

  7. P. Singh, V. Radhakrishnan, K.A. Narayan, Ing. Arch. 60, 274 (1990)

    Article  Google Scholar 

  8. A.F. Elkouh, J. Tribol. 106, 223 (1986)

    Article  Google Scholar 

  9. P.T. Nan, R.I. Tanner, J. Non-Newtonian Fluid Mech. 14, 327 (1984)

    Article  Google Scholar 

  10. M. Kompani, D.C. Venerus, Rheol. Acta 39, 444 (2000)

    Article  Google Scholar 

  11. B. Hoffner, O.H. Campanella, M.G. Corradini, M. Peleg, Rheol. Acta 40, 289 (2001)

    Article  Google Scholar 

  12. J.H. He, Int. J. Mod. Phys. 20, 1141 (2006)

    Article  ADS  Google Scholar 

  13. Y. Jaluria, Natural Convection, Heat and Mass Transfer (Pergamon Press, New York, 1980)

  14. I. Michiyoshi, I. Takahashi, A. Serizawa, Int. J. Heat Mass Transfer 19, 1021 (1976)

    Article  ADS  Google Scholar 

  15. M. Fumizawa, J. Nucl. Sci. Technol. 17, 98 (1980)

    Article  Google Scholar 

  16. P.R. Shrama, G. Singh, Tamkang J. Sci. Eng. 13, 235 (2010)

    Google Scholar 

  17. J.C. Hunt, R.J. Holroyd, Applications of Laboratory and Theoretical MHD Duct Flow Studies in Fusion Reactor Technology, technical report CLM-R 169, Culham Laboratory (Oxfordshire, UK, 1977)

  18. N.B. Morley et al., Fusion Sci. Technol. 47, 488 (2005)

    Article  Google Scholar 

  19. P.A. Davidson, Magnetohydrodynamics 29, 49 (1993)

    Google Scholar 

  20. A. Tsinober, AIAA Progr. Aeronau. Astronaut. 123, 327 (1990)

    Google Scholar 

  21. R. Younsi, Therm. Sci. 13, 13 (2009)

    Article  Google Scholar 

  22. A.A. Mohamed, Meccanica 45, 97 (2010)

    Article  MathSciNet  Google Scholar 

  23. P.R. Sharma, G. Singh, Therm. Sci. 13, 5 (2009)

    Article  Google Scholar 

  24. P.A. Vadher et al., Meccanica 45, 767 (2010)

    Article  MathSciNet  Google Scholar 

  25. H. Kumar, Therm. Sci. 13, 163 (2009)

    Article  Google Scholar 

  26. J.G. Abuga, M. Kinyanjui, J.K. Sigey, J. Eng. Technol. Res. 3, 314 (2011)

    Google Scholar 

  27. H.A. Hoshyar, D.D. Ganji, A.R. Borran, M. Falahati, Latin Am. J. Solid Struct. 12, 1679 (2015)

    Article  Google Scholar 

  28. N. Carnot, Reflexions sur la Puissance Motrice du Feu (Bachelier, France, Paris, 1824)

  29. R. Clausius, Ann. Phys. 169, 481 (1854)

    Article  Google Scholar 

  30. R. Clausius, Ann. Phys. 201, 353 (1865)

    Article  Google Scholar 

  31. A. Bejan, Entropy Generation Through Heat Fluid Flow (New York Wiley, 1982)

  32. A. Bejan, Adv. Heat Transfer 15, 1 (1982)

    Article  ADS  Google Scholar 

  33. A. Bejan, Energy Int. 5, 721 (1980)

    ADS  Google Scholar 

  34. A. Bejan, Entropy Generation Minimization (CRC Press, New York, NY, USA, 1995)

  35. A. Bejan, J. Heat Transf. 101, 718 (1979)

    Article  Google Scholar 

  36. A. Bejan, G. Tsatsaronis, M. Moran, Thermal Design and Optimization (JohnWiley and Sons, New York, NY, USA, 1996)

  37. M. Roy, T. Basak, S. Roy, I. Pop, Numer., Heat Transf., Part A Appl. 68, 44 (2015)

    Article  ADS  Google Scholar 

  38. S. Bhardwaj, A. Dalal, Numer. Heat Transf. Part A Appl. 67, 972 (2015)

    Article  ADS  Google Scholar 

  39. Y.T. Yang, Y.H. Wang, H. Yi-Hsien, B.Y. Huang, Numer. Heat Transf. Part A Appl. 67, 571 (2015)

    Article  ADS  Google Scholar 

  40. G. Komurgoz, A. Arikoglu, E. Turker, I. Ozkol, Numer. Heat Transf. Part A Appl. 57, 603 (2010)

    Article  ADS  Google Scholar 

  41. H. Salas, S. Cuevas, M.L. de Haro, J. Phys. D 32, 2605 (1999)

    Article  ADS  Google Scholar 

  42. S. Mahmud, S.H. Tasnim, M.A.H. Mamun, Int. J. Therm. Sci. 42, 731 (2003)

    Article  Google Scholar 

  43. D.S. Chauhan, V. Kumar, Int. J. Energy Technol. 3, 1 (2011)

    Google Scholar 

  44. M.Q.A. Odat, A. Renhe, Mohd A. Damseh, Al-Nimr., Entropy 6, 293 (2004)

    Article  ADS  Google Scholar 

  45. R. Shah, A. Khan, Shuaib, Eur. Phys. J. Plus 132, 342 (2017)

    Article  Google Scholar 

  46. R. Shah, A. Khan, Shuaib, J. Comput. Theor. Nanosci. 14, 1C12 (2017)

    Article  Google Scholar 

  47. A. Khan, R. Shah, M. Shuaib, Results Phys. 9, 923 (2018)

    Article  ADS  Google Scholar 

  48. R. Shah, A. Khan, Shuaib, Heliyon 4, e00925 (2018)

    Article  Google Scholar 

  49. R. Shah, A. Khan, Shuaib, Heat Transf. Res. 49, 1103C1118 (2018)

    Google Scholar 

  50. R. Shah, A. Khan, Shuaib, J. Phys. Math. 8, 242 (2017)

    Google Scholar 

  51. Zahir Shah, Saeed Islam, Hamza Ayaz, Saima Khan, J. Heat Transf. 141, 022401 (2018)

    Article  Google Scholar 

  52. Zahir Shah, Saeed Islama, Taza Gul, Results Phys. 9, 1201 (2018)

    Article  ADS  Google Scholar 

  53. Zahir Shah, Saeed Islama, Taza Gul, Results Phys. 10, 36 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Sohail Khan.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.S., Shah, R.A. & Khan, A. Effect of variable magnetic field on the flow between two squeezing plates. Eur. Phys. J. Plus 134, 219 (2019). https://doi.org/10.1140/epjp/i2019-12595-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12595-0

Navigation