Skip to main content
Log in

Effects of using obstacles on the dam-break flow based on entropy generation analysis

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In the present research, the entropy generation analysis has been done in the dam-break flow with obstacles in different shapes. The damage to the downstream of dams is done by fluid energy. So, entropy generation was introduced as a measurement criterion of destruction. In this way, a numerical model has been developed to evaluate the dam-break phenomenon. In the developed model, the governing equations were discretized and solved using the simplified marker and cell method. Free-surface tracking has been done using the volume-of-fluid method. Based on the results, the averaged entropy generation is maximized, when square obstacles are installed at a distance of \( d_o/H_0=1.8\)-1.9. In this equation, do is the distance between dam and obstacle, and H0 is the water depth. The results also show that the averaged entropy generation is maximized when the sidewall angle of the triangle obstacle is increased. However, based on the stability analysis, the sidewall angle of the triangle obstacle must be less than \( 55^{\circ}\). Therefore, the triangle obstacle with \( 55^{\circ}\) sidewall angle is suggested as the optimum obstacle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Saghi, M.J. Ketabdari, M. Zamirian, Appl. Math. Model. 37, 570 (2013)

    Article  MathSciNet  Google Scholar 

  2. H. Saghi, M.J. Ketabdari, J. Mar. Sci. Appl. 11, 417 (2012)

    Article  Google Scholar 

  3. H. Saghi, Int. J. Naval Architect. Ocean Eng. 8, 153 (2016)

    Article  Google Scholar 

  4. M.J. Ketabdari, H. Saghi, Appl. Math. Comput. 224, 123 (2013)

    MathSciNet  Google Scholar 

  5. M.J. Ketabdari, H. Saghi, Int. J. Comput. Methods 10, 1350046 (2013)

    Article  MathSciNet  Google Scholar 

  6. M.J. Ketabdari, H. Saghi, H. Rezaei, K. Rezanejad, KSCE J. Civ. Eng. 19, 805 (2015)

    Article  Google Scholar 

  7. M.J. Ketabdari, H. Saghi, J. Ocean Univ. China 12, 23 (2013)

    Article  ADS  Google Scholar 

  8. M.J. Ketabdari, H. Saghi, Iran. J. Mar. Sci. Technol. 18, 33 (2012)

    Google Scholar 

  9. H. Saghi, Sharif J. Mech. Eng. 34, 13 (2018)

    Google Scholar 

  10. H. Saghi, A. Hashemian, Comput. Math. Appl. 76, 2496 (2018)

    Article  MathSciNet  Google Scholar 

  11. R. Marsooli, W. Wu, Adv. Water Res. 70, 104 (2014)

    Article  Google Scholar 

  12. T. Fondelli, A. Andreini, B. Facchini, Energy Proc. 82, 309 (2015)

    Article  Google Scholar 

  13. T. Zhang, L. Peng, P. Feng, Comput. Fluids 160, 64 (2018)

    Article  MathSciNet  Google Scholar 

  14. C.H. Tony, W.H. Sheu, Comput. Phys. Commun. 221, 1 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  15. W. Lai, A.A. Khan, J. Hydrodyn. Ser. B 24, 467 (2012)

    Article  ADS  Google Scholar 

  16. S.L. Razavi toosi, S.A. Ayyoubzadeh, A.R. Valizadeh, Int. J. Sediment Res. 29, 344 (2014)

    Article  Google Scholar 

  17. T.J. Chang, M. Kao, K.H. Chang, M.H. HSU, J. Hydrol. 408, 78 (2011)

    Article  ADS  Google Scholar 

  18. M. Prakash, K. Rothauge, P.W. Cleary, Appl. Math. Model. 38, 5515 (2014)

    Article  Google Scholar 

  19. L. Wang, C. Pan, J. Hydrodyn. Ser. B 26, 902 (2015)

    Article  Google Scholar 

  20. L. Cozzolino, L. Cimorelli, C. Covell, R. Della Morte, D. Pianese, Adv. Water Res. 80, 90 (2015)

    Article  Google Scholar 

  21. B. Wang, Y. Chen, C. Wu, Y. Peng, X. Ma, J. Song, J. Hydro-environ. Res. 14, 93 (2017)

    Article  Google Scholar 

  22. O. Seyedashraf, A. Rezaei, A.A. Akhtari, Ocean Eng. 142, 125 (2017)

    Article  Google Scholar 

  23. X. Li, J. Zhao, Powder Technol. 338, 493 (2018)

    Article  Google Scholar 

  24. N.J. Balmforth, R.V. Craster, P. Prona, A.C. Rust, R. Sassi, J. Non-Newtonian Fluid Mech. 142, 63 (2007)

    Article  Google Scholar 

  25. G.P. Matson, A.J. Hogg, J. Non-Newtonian Fluid Mech. 142, 79 (2007)

    Article  Google Scholar 

  26. Z. He, T. Wu, H. Weng, P. Hu, G. Wu, Int. J. Sediment Res. 32, 105 (2017)

    Article  Google Scholar 

  27. A. Issakhov, Y. Zhandaulet, A. Nogaeva, Int. J. Multiphase Flow 109, 191 (2018)

    Article  MathSciNet  Google Scholar 

  28. H. Ozmen-Cagatay, S. Kocaman, H. Guzel, J. Hydro-environ. Res. 8, 304 (2014)

    Article  Google Scholar 

  29. A. Bejan, J. Heat Transf. 101, 718 (1979)

    Article  Google Scholar 

  30. E. Lakzian, A. Masjedi, Int. J. Exergy 14, 22 (2014)

    Article  Google Scholar 

  31. E. Lakzian, A. Shabani, Int. J. Exergy 13, 383 (2015)

    Article  Google Scholar 

  32. A. Lotfi, E. Lakzian, Eur. Phys. J. Plus 131, 123 (2016)

    Article  Google Scholar 

  33. R. Soltanmohammadi, E. Lakzian, Meccanica 51, 1713 (2016)

    Article  Google Scholar 

  34. E. Lakzian, R. Soltanmohammadi, M. Nazeryan, Sci. Iran. B 23, 2673 (2016)

    Google Scholar 

  35. A. Bejan, Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes (CRC Press, Boca Raton, 2013) https://doi.org/10.1201/9781482239171

  36. O. Mahian, A. Kianifar, A.Z. Sahin, S. Wongwises, J. Heat Transf. 137, 061011 (2015)

    Article  Google Scholar 

  37. O. Mahian, S. Mahmud, S. Wongwises, J. Thermophy. Heat Transf. 27, 161 (2013)

    Article  Google Scholar 

  38. R. Ebrahimi, N. Sakenian Dehkordi, J. Therm. Anal. Calorim. 133, 1609 (2018)

    Article  Google Scholar 

  39. H. Saghi, M.J. Ketabdari, S. Booshi, Appl. Math. Mech. 33, 1179 (2012)

    Article  Google Scholar 

  40. H. Saghi, J. Mar. Sci. Technol. (2018) https://doi.org/10.1007/s00773-018-0564-0

  41. M.J. Ketabdari, H. Saghi, ISRN Mech. Eng. 2011, 809498 (2011)

    Article  Google Scholar 

  42. M.J. Ketabdari, H. Saghi, J. Braz. Soc. Mech. Sci. Eng. 35, 479 (2013)

    Article  Google Scholar 

  43. M. Rudman, Int. J. Numer. Methods Fluids 24, 671 (1997)

    Article  ADS  Google Scholar 

  44. H. Saghi, M.J. Ketabdari, Arab. J. Sci. Eng. 39, 669 (2014)

    Article  MathSciNet  Google Scholar 

  45. H. Saghi, E. Lakzian, Energy 128, 564 (2017)

    Article  Google Scholar 

  46. T. Ghisu, F. Cambuli, P. Puddu, N. Mandas, P. Seshadri, G.T. Parks, Meccanica 53, 3437 (2018)

    Article  MathSciNet  Google Scholar 

  47. A.S. Shehata, Q. Xiao, M.A. Kotb, M.M. Selim, A.H. Elbatran, D. Alexander, Ocean Eng. 157, 262 (2018)

    Article  Google Scholar 

  48. T. Gratton, T. Ghisu, G. Parks, F. Cambuli, P. Puddu, Ocean Eng. 169, 202 (2018)

    Article  Google Scholar 

  49. A.R. Mamouri, A. Khoshnevis, E. Lakzian, Ocean Eng. 173, 700 (2019)

    Article  Google Scholar 

  50. E. Lakzian, M. Hajian, A. Farahmand, Meccanica 53, 145 (2018)

    Article  Google Scholar 

  51. M. Nazeryan, E. Lakzian, Energy 143, 385 (2018)

    Article  Google Scholar 

  52. A.S. Shehata, K.M. Saqr, Q. Xiao, M.F. Shehadeh, A. Day, Renew. Energy 86, 1123 (2016)

    Article  Google Scholar 

  53. E. Lakzian, A. Estiri, Eur. Phys. J. Plus 133, 454 (2018)

    Article  Google Scholar 

  54. H. Saghi, Physica A 491, 972 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  55. J.C. Martin, W.J. Moyce, Philos. Trans. R. Soc. London 244, 312 (1982)

    Article  Google Scholar 

  56. S. Koshizuka, H. Tamako, Y. Oka, Comput. Fluid Dyn. J. 4, 29 (1995)

    Google Scholar 

  57. Bureau of reclamation, Design of Small Dams: A Water Resources Technical Publication (United State Department of the Interior, 1987)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmail Lakzian.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saghi, H., Lakzian, E. Effects of using obstacles on the dam-break flow based on entropy generation analysis. Eur. Phys. J. Plus 134, 237 (2019). https://doi.org/10.1140/epjp/i2019-12592-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12592-3

Navigation