Skip to main content
Log in

Wave propagation in functionally graded cylindrical nanoshells based on nonlocal Flügge shell theory

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In the present work, wave propagation characteristics of circular cylindrical nanoshells made of functionally graded materials are investigated. Material properties of the nanoshells are graded in the thickness direction according to the power-law distribution. The Flügge shell theory together with the nonlocal elasticity theory is employed to model the present system. The wave dispersion relations with respect to the wave number in the longitudinal and circumferential directions are derived. In addition, a parametric study is carried out to highlight the influences of the power-law exponent, the wave number, the nonlocal parameter and the radius-to-thickness ratio. The results indicate that these parameters have a significant effect on the wave propagation characteristics of functionally graded material (FGM) cylindrical nanoshells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Koizumi, Composites Part B 28, 1 (1997)

    Article  Google Scholar 

  2. G.L. She, K.M. Yan, Y.L. Zhang, H.B. Liu, Y.R. Ren, Eur. Phys. J. Plus 133, 368 (2018)

    Article  Google Scholar 

  3. Y.Q. Wang, J.W. Zu, Compos. Struct. 164, 130 (2017)

    Article  Google Scholar 

  4. S.C. Pradhan, C.T. Loy, K.Y. Lam, J.N. Reddy, Appl. Acoust. 61, 111 (2000)

    Article  Google Scholar 

  5. Y.Q. Wang, Acta Astronaut. 143, 263 (2018)

    Article  ADS  Google Scholar 

  6. Y.Q. Wang, J.W. Zu, Aerospace Sci. Technol. 69, 550 (2017)

    Article  Google Scholar 

  7. H. Aminipour, M. Janghorban, L. Li, Compos. Struct. 190, 91 (2018)

    Article  Google Scholar 

  8. W. Zhang, Y.X. Hao, J. Yang, Compos. Struct. 94, 1075 (2012)

    Article  Google Scholar 

  9. H. Huang, Q. Han, Eur. J. Mech. A/Solids 29, 42 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  10. C.M. Craciunescu, M. Wuttig, J. Optoelectron. Adv. Mater. 5, 139 (2003)

    Google Scholar 

  11. Y. Fu, H. Du, W. Huang, S. Zhang, M. Hu, Sensors Actuat. A 112, 395 (2004)

    Article  Google Scholar 

  12. Z. Lee, C. Ophus, L.M. Fischer, N. Nelson-Fitzpatrick, K.L. Westra, S. Evoy, V. Radmilovic, U. Dahmen, D. Mitlin, Nanotechnology 17, 3063 (2006)

    Article  Google Scholar 

  13. X. Li, B. Bhushan, K. Takashima, C.W. Baek, Y.K. Kim, Ultramicroscopy 97, 481 (2003)

    Article  Google Scholar 

  14. Y. Fu, H. Du, S. Zhang, Mater. Lett. 57, 2995 (2003)

    Article  Google Scholar 

  15. H.M. Sedighi, F. Daneshmand, M. Abadyan, Compos. Struct. 132, 545 (2015)

    Article  Google Scholar 

  16. A. Witvrouw, A. Mehta, Mater. Sci. Forum 492--493, 255 (2005)

    Article  Google Scholar 

  17. X.L. Jia, J. Yang, S. Kitipornchai, C.W. Lim, Appl. Math. Model. 36, 1875 (2012)

    Article  MathSciNet  Google Scholar 

  18. M. Arefi, A.M. Zenkour, Mod. Phys. Lett. B 32, 1 (2018)

    Article  Google Scholar 

  19. K. Mohammadi, M. Mahinzare, K. Ghorbani, M. Ghadiri, Microsyst. Technol. 24, 1133 (2017)

    Article  Google Scholar 

  20. C.S. Zhu, X.Q. Fang, J.X. Liu, Int. J. Mech. Sci. 133, 662 (2017)

    Article  Google Scholar 

  21. S. Sahmani, M.M. Aghdam, Int. J. Mech. Sci. 131--132, 95 (2017)

    Article  Google Scholar 

  22. S. Sahmani, M.M. Aghdam, Compos. Struct. 178, 97 (2017)

    Article  Google Scholar 

  23. J. Sun, C.W. Lim, Z. Zhou, X. Xu, W. Sun, J. Appl. Phys. 119, 214303 (2016)

    Article  ADS  Google Scholar 

  24. M.H. Shojaeefard, H. Saeidi Googarchin, M. Mahinzare, M. Adibi, J. Intell. Mater. Syst. Struct. 29, 2344 (2018)

    Article  Google Scholar 

  25. H. Zeighampour, M. Shojaeian, J. Braz. Soc. Mech. Sci. Eng. 39, 2789 (2017)

    Article  Google Scholar 

  26. X.Q. Fang, C.S. Zhu, J.X. Liu, J. Zhao, Mater. Res. Express 5, 45017 (2018)

    Article  Google Scholar 

  27. Y.G. Hu, K.M. Liew, Q. Wang, X.Q. He, B.I. Yakobson, J. Mech. Phys. Solids 56, 3475 (2008)

    Article  ADS  Google Scholar 

  28. H. Zeighampour, Y.T. Beni, I. Karimipour, Microfluid. Nanofluid. 21, 1 (2017)

    Article  Google Scholar 

  29. H. Zeighampour, Y. Tadi Beni, M. Botshekanan Dehkordi, Thin-Walled Struct. 122, 378 (2018)

    Article  Google Scholar 

  30. L.H. Ma, L.L. Ke, J.N. Reddy, J. Yang, S. Kitipornchai, Y.S. Wang, Compos. Struct. 199, 10 (2018)

    Article  Google Scholar 

  31. Q. Wang, V.K. Varadan, Smart Mater. Struct. 16, 178 (2007)

    Article  ADS  Google Scholar 

  32. Y.S. Touloukian, Thermophysical Properties of High Temperature Solid Materials (Macmillian, New York, 1967)

  33. W. Zhang, J. Yang, Y.X. Hao, Nonlinear Dyn. 59, 619 (2010)

    Article  Google Scholar 

  34. Y.Q. Wang, Y.H. Wan, J.W. Zu, Thin-Walled Struct. 135, 537 (2019)

    Article  Google Scholar 

  35. A.C. Eringen, Nonlocal Polar Field Models (Academic, New York, 1976)

  36. A.C. Eringen, J. Appl. Phys. 54, 4703 (1983)

    Article  ADS  Google Scholar 

  37. W. Flügge, Stresses in Shells (1960)

  38. J.N. Reddy, C.D. Chin, J. Therm. Stresses 21, 593 (1998)

    Article  Google Scholar 

  39. Y. Tadi Beni, F. Mehralian, H. Razavi, Compos. Struct. 120, 65 (2015)

    Article  Google Scholar 

  40. F. Mehralian, Y.T. Beni, Composites Part B 94, 11 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Qing Wang.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y.Q., Liang, C. & Zu, J.W. Wave propagation in functionally graded cylindrical nanoshells based on nonlocal Flügge shell theory. Eur. Phys. J. Plus 134, 233 (2019). https://doi.org/10.1140/epjp/i2019-12543-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12543-0

Navigation