Skip to main content
Log in

Fluid motion in a corrugated curved channel

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper, pressure driven flow between two corrugated curved walls is analyzed. The combined effects of the corrugations and the radius of curvature of the channel on the fluid flow are investigated using the boundary perturbation method. The results show that the peak of the velocity increases with the radius of curvature and the width of the channel for a constant pressure gradient. The flow rate is increased by the corrugations for any phase difference between the corrugated curved walls depending on the corrugation wavenumber and the channel radius of curvature. For a sufficiently large corrugation wavenumber, the flow rate decreases, and the phase difference becomes irrelevant. However, the reduction in flow can be minimized by decreasing the channel radius of curvature. In general, a smooth curved channel will give the maximum flow rate for large corrugation wavenumber. The results of this study are consistent with those of a corrugated straight channel flow for sufficiently large radius of curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Song, X. Yang, F. Xin, T.J. Lu, Phys. Fluids 30, 023604 (2018)

    Article  ADS  Google Scholar 

  2. A. Mohammadi, J.M. Floryan, J. Fluid Mech. 725, 23 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  3. J.C.F. Chow, K. Soda, ASME J. Appl. Mech. 40, 843 (1973)

    Article  ADS  Google Scholar 

  4. A.E. Bergles, J. Heat Transf. 100, 1082 (1988)

    Article  Google Scholar 

  5. T. Luelf, M. Tepper, H. Breisig, M. Wessling, J. Membr. Sci. 533, 302 (2017)

    Article  Google Scholar 

  6. A.E. Malevich, V.V. Mityushev, P.M. Adler, Acta Mech. 197, 247 (2008)

    Article  Google Scholar 

  7. A. Mohammadi, J.M. Floryan, Theor. Comput. Fluid Dyn. 28, 549 (2014)

    Article  Google Scholar 

  8. H.V. Moradi, J.M. Floryan, Phys. Fluids 28, 074103 (2016)

    Article  ADS  Google Scholar 

  9. C.Y. Wang, J. Eng. Mech. Div. 102, 1088 (1976)

    Google Scholar 

  10. M. Buren, Y. Jian, L. Chang, J. Phys. D: Appl. Phys. 47, 425501 (2014)

    Article  ADS  Google Scholar 

  11. N. Phan-Thien, J.D. Atkinson, J. Eng. Mech. 109, 756 (1983)

    Article  Google Scholar 

  12. I. Sobey, J. Fluid Mech. 125, 359 (1982)

    Article  ADS  Google Scholar 

  13. T. Nishimura, H. Miyahita, S. Murakami, Y. Kawamura, Chem. Eng. Sci. 46, 757 (1991)

    Article  Google Scholar 

  14. C.O. Ng, C.Y. Wang, Transp. Porous Med. 85, 605 (2010)

    Article  Google Scholar 

  15. C.Y. Wang, J. Appl. Mech. 46, 462 (1976)

    Article  Google Scholar 

  16. M. Buren, Y. Jian, Electrophoresis 36, 1539 (2015)

    Article  Google Scholar 

  17. W.K.H. Chu, Z. Angew. Math. Mech. 76, 363 (1996)

    MathSciNet  Google Scholar 

  18. C.Y. Wang, Mech. Res. Commun. 38, 249 (2011)

    Article  Google Scholar 

  19. Z.H.K. Chu, J. Phys. D 33, 462 (2003)

    Google Scholar 

  20. Z. Duan, Y.S. Muzychka, ASME J. Fluids Eng. 134, 041001 (2010)

    Google Scholar 

  21. Z. Duan, Y.S. Muzychka, ASME J. Fluids Eng. 130, 031102 (2008)

    Article  Google Scholar 

  22. H.V. Moradi, J.M. Floryan, AIAA J. 55, 5 (2017)

    Article  Google Scholar 

  23. H.V. Moradi, J.M. Floryan, J. Fluid Mech. 716, 280 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  24. W.R. Dean, Proc. R. Soc. London Ser. A 121, 402 (1928)

    Article  ADS  Google Scholar 

  25. S.A. Berger, L. Talbot, L.S. Yao, Annu. Rev. Fluid. Mech. 15, 461 (1983)

    Article  ADS  Google Scholar 

  26. M. Zagzoule, P. Cathalifaud, J. Cousteix, J. Mauss, Phys. Fluids 24, 013601 (2012)

    Article  ADS  Google Scholar 

  27. M. Akiyama, K.C. Cheng, Appl. Sci. Res. 32, 463 (1976)

    Article  Google Scholar 

  28. M. Turkyilmazoglu, Eur. J. Mech. B/Fluids 65, 184 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  29. M. Turkyilmazoglu, Int. J. Heat Mass Transfer 85, 609 (2015)

    Article  Google Scholar 

  30. E. Lauga, A.D. Stroock, H.A. Stone, Phys. Fluids 16, 3051 (2014)

    Article  ADS  Google Scholar 

  31. H. Schlichting, K. Gersten, Boundary Layer Theory, 9th ed. (Springer-Verlag, Berlin, Heidelberg, 2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nnamdi Fidelis Okechi.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okechi, N.F., Asghar, S. Fluid motion in a corrugated curved channel. Eur. Phys. J. Plus 134, 165 (2019). https://doi.org/10.1140/epjp/i2019-12517-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12517-2

Navigation