Skip to main content
Log in

Effect of 8 MeV electron beam irradiation on the structural, optical and electrical properties of a PANI-MnWO4 nanocomposite

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The effect of 8MeV electron beam irradiation on the structural, optical and electrical properties of a PANI-MnWO4 nanocomposite synthesized by in situ chemical oxidative polymerization in the presence of MnWO4 nanoparticles was investigated. The dose-dependent effect of electron irradiation was studied using various characterization techniques, such as X-ray diffraction, Fourier-transformed infrared spectroscopy, UV-vis absorption spectroscopy and impedance analyser. Systematic investigation based on the results of structural studies confirms that electron beam irradiation induces defects and particle size variation on the PANI-MnWO4 nanocomposite, which in turn results in improvements in optical absorption, band gap, DC and AC conductivity, and dielectric constant and loss tangent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.V. Krasheninnikov, Nordlund K. Ion, J. Appl. Phys. 107, 071301 (2010)

    Article  ADS  Google Scholar 

  2. E.J. Yun et al., J. Appl. Phys. 105, 123509 (2009)

    Article  ADS  Google Scholar 

  3. K. Jeon et al., Curr. Appl. Phys. 14, 1591 (2014)

    Article  ADS  Google Scholar 

  4. K.K. Babitha et al., Mater. Charact. 98, 222 (2014)

    Article  Google Scholar 

  5. P.A. Sheena et al., Bull. Mater. Sci. 38, 825 (2015)

    Article  Google Scholar 

  6. A. Sreedevi et al., Micron 88, 1 (2016)

    Article  Google Scholar 

  7. K.P. Priyanka et al., J. Nanotechnol. 2013, 580308 (2013)

    Article  Google Scholar 

  8. S. Bhadra, D. Khastgir, Polym. Degrad. Stab. 92, 1824 (2007)

    Article  Google Scholar 

  9. N. Aloysius Sabu et al., Radiat. Phys. Chem. 123, 1 (2016)

    Article  ADS  Google Scholar 

  10. Sangappa et al., Nucl. Instrum. Methods Phys. Res. B 266, 3975 (2008)

    Article  ADS  Google Scholar 

  11. E. Bohler et al., Chem. Soc. Rev. 42, 9219 (2013)

    Article  Google Scholar 

  12. I.G. Gonzalez et al., Nanoscale 8, 11340 (2016)

    Article  ADS  Google Scholar 

  13. R.C. Oliveira et al., J. Phys. Chem. C 120, 12254 (2016)

    Article  Google Scholar 

  14. L. Al-Mashat et al., J. Phys. Chem. C 114, 16168 (2010)

    Article  Google Scholar 

  15. L. Shi et al., Synth. Metals 159, 2525 (2009)

    Article  Google Scholar 

  16. S.B. Kondawar, M.D. Deshpande, S.P. Agrawal, J. Compos. Mater. 2, 32 (2012)

    Google Scholar 

  17. Z.F. Li, E. Ruckenstein, Langmuir ACS J. Surf. Colloids 18, 6956 (2002)

    Article  Google Scholar 

  18. A. Mostafaei, A. Zolriasatein, Prog. Nat. Sci.: Mater. Int. 22, 273 (2012)

    Article  Google Scholar 

  19. I.Y. Sapurina, M.A. Shishov, New Polymers for Special Applications (Aliton de Souza Gome, 2012) pp. 251--312

  20. B.D. Cullity, Elements of X-ray Diffraction, 2nd edition (Addison-Wesley Publishing Company, California, 1978)

  21. Thomas Varghese, K.M. Balakrishna, Nanotechnology: An Introduction to Synthesis, Properties and Applications of Nanomaterials (Atlantic Publishers, New Delhi, 2011)

  22. G.M. Fernández et al., Chem. Rev. 104, 4063 (2004)

    Article  Google Scholar 

  23. F. Muhammad, K. Syed, Bull. Korean Chem. Soc. 34, 99 (2013)

    Article  Google Scholar 

  24. N. Joseph, J. Varghese, M.T. Sebastian, RSC Adv. 5, 20459 (2015)

    Article  Google Scholar 

  25. S. Banerjee, S. Sarmah, A. Kumar, J. Opt. 38, 124 (2009)

    Article  Google Scholar 

  26. W.S. Huang, A.G. MacDiarmid, Polymer 34, 1833 (1993)

    Article  Google Scholar 

  27. M. Canales et al., J. Phys. Chem. B 118, 11552 (2014)

    Article  Google Scholar 

  28. K.C. Sajjan et al., J. Mater. Sci.: Mater. Electron. 25, 1237 (2014)

    Google Scholar 

  29. P. Ghosh et al., J. Phys. D 39, 3047 (2006)

    Article  ADS  Google Scholar 

  30. R.M. Hill, A.K. Jonscher, J. Non-Cryst. Solids 32, 53 (1979)

    Article  ADS  Google Scholar 

  31. M.O. Ansari et al., New J. Chem. 39, 8381 (2015)

    Article  MathSciNet  Google Scholar 

  32. J.R. Laghari, A.N. Hammoud, IEEE Trans. Nucl. Sci. 37, 1076 (1990)

    Article  ADS  Google Scholar 

  33. U.A. Sevil et al., Radiat. Phys. Chem. 67, 575 (2003)

    Article  ADS  Google Scholar 

  34. S.M. Reda, A.M. Al-Ghannam, Adv. Mater. Phys. Chem. 2, 75 (2012)

    Article  Google Scholar 

  35. Shumaila et al., Curr. Appl. Phys. 11, 217 (2011)

    Article  ADS  Google Scholar 

  36. A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983)

  37. A.K. Himanshu et al., Radiat. Effects Defects Solids 169, 73 (2013)

    Article  ADS  Google Scholar 

  38. D.D. Chung, Composite Materials: Science and Applications (Springer Science & Business Media, New York, 2010)

  39. S. Tiptipakorn et al., Adv. Mater. Res. 861, 550 (2012)

    Google Scholar 

  40. J. Bhadra et al., Arab. J. Chem. 10, 664 (2015)

    Article  Google Scholar 

  41. Y. Katsumi, H. Shigenori, I. Yoshio, Jpn. J. Appl. Phys. 21, L569 (1982)

    Article  Google Scholar 

  42. A.Shakoor, T.Z. Rizvi, A. Nawaz, J. Mater. Sci.: Mater. Electron. 22, 1076 (2011)

    Google Scholar 

  43. Y.T. Ravikiran et al., Synth. Metals 156, 1139 (2006)

    Article  Google Scholar 

  44. B.M. Greenhoe et al., J. Polym. Sci. Part B 54, 1918 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Varghese.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aloysius Sabu, N., Francis, X., Ganesh, S. et al. Effect of 8 MeV electron beam irradiation on the structural, optical and electrical properties of a PANI-MnWO4 nanocomposite. Eur. Phys. J. Plus 134, 42 (2019). https://doi.org/10.1140/epjp/i2019-12462-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12462-0

Navigation