Skip to main content
Log in

Decay properties of singly charmed baryons

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The magnetic moments, transition magnetic moments and the radiative decay widths of singly charmed baryons are calculated with \( J^P = \frac{1}{2}^+\) and \( J^P = \frac{3}{2}^+\) in the constitute quark model. Further, the strong decay rates for S, P and D wave transitions are also presented. The singly charmed baryon masses used in the calculations were obtained from the hypercentral Constitute Quark Model (hCQM) without and with first-order relativistic correction. Obtained results are compared with experimental observation as well as with the other theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Particle Data Group (M. Tanabashi et al.), Phys. Rev. D 98, 030001 (2018)

    Google Scholar 

  2. Z. Shah et al., Eur. Phys. J. A 52, 313 (2016)

    Article  ADS  Google Scholar 

  3. Belle Collaboration (S.H. Lee et al.), Phys. Rev. D 89, 091102 (2014)

    Article  ADS  Google Scholar 

  4. CDF Collaboration (T. Aaltonen et al.), Phys. Rev. D 84, 012003 (2011)

    Article  Google Scholar 

  5. CLEO Collaboration (M. Athar et al.), Phys. Rev. D 71, 051101 (2005)

    Article  Google Scholar 

  6. CLEO Collaboration (M. Artuso et al.), Phys. Rev. D 65, 071101 (2002)

    Article  Google Scholar 

  7. FOCUS Collaboration (J.M. Link et al.), Phys. Lett. B 488, 218 (2000)

    Article  Google Scholar 

  8. CLEO Collaboration (G. Crawford et al.), Phys. Rev. Lett. 71, 3259 (1993)

    Article  ADS  Google Scholar 

  9. Belle Collaboration (J. Yelton et al.), Phys. Rev. D 94, 052011 (2016)

    Article  ADS  Google Scholar 

  10. CLEO Collaboration (P. Avery et al.), Phys. Rev. Lett. 75, 4364 (1995)

    Article  Google Scholar 

  11. H. Albrecht et al., Phys. Lett. B 402, 207 (1997)

    Article  ADS  Google Scholar 

  12. K. Edwards et al., Phys. Rev. Lett. 74, 3331 (1995)

    Article  ADS  Google Scholar 

  13. H.Y. Cheng, Front. Phys. 10, 101406 (2015)

    Article  Google Scholar 

  14. H.X. Chen et al., Rep. Prog. Phys. 80, 076201 (2017)

    Article  ADS  Google Scholar 

  15. V. Crede, W. Roberts, Rep. Prog. Phys. 76, 076301 (2013)

    Article  ADS  Google Scholar 

  16. E. Klempt, J.M. Richard, Rev. Mod. Phys. 82, 1095 (2010)

    Article  ADS  Google Scholar 

  17. H.S. Li et al., Rev. D 96, 076011 (2017)

    Article  Google Scholar 

  18. G.J. Wang, arXiv:1803.00229 (2018)

  19. R. Dhir, R. Verma, Eur. Phys. J. A 42, 243 (2009)

    Article  ADS  Google Scholar 

  20. A. Bernotas, V. Simonis, Phys. Rev. D 87, 074016 (2013)

    Article  ADS  Google Scholar 

  21. T. Aliev, K. Azizi, A. Ozpineci, Nucl. Phys. B 808, 137 (2009)

    Article  ADS  Google Scholar 

  22. K.U. Can et al., JHEP 5, 125 (2014)

    Article  ADS  Google Scholar 

  23. H. Bahtiyar et al., Phys. Lett. B 747, 281 (2015)

    Article  ADS  Google Scholar 

  24. H. Bahtiyar et al., Phys. Lett. B 772, 121 (2017)

    Article  ADS  Google Scholar 

  25. A. Faessler et al., Phys. Rev. D 73, 094013 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  26. N. Barik, M. Das, Phys. Rev. D 28, 2823 (1983)

    Article  ADS  Google Scholar 

  27. C. Albertus et al., Eur. Phys. J. A 32, 183 (2007)

    Article  ADS  Google Scholar 

  28. B. Patel, A.K. Rai, P.C. Vinodkumar, J. Phys. G: Nucl. Part. Phys. 35, 065001 (2008)

    Article  ADS  Google Scholar 

  29. N. Sharma et al., Phys. Rev. D 81, 073001 (2010)

    Article  ADS  Google Scholar 

  30. M.A. Ivanov et al., Phys. Rev. D 60, 094002 (1999)

    Article  ADS  Google Scholar 

  31. T. Aliev, K. Azizi, A. Ozpineci, Phys. Rev. D 79, 056005 (2009)

    Article  ADS  Google Scholar 

  32. T. Aliev, M. Savci, V. Zamiralov, Mod. Phys. Lett. A 27, 1250054 (2012)

    Article  ADS  Google Scholar 

  33. Z. Shah et al., Chin. Phys. C 40, 123102 (2016)

    Article  ADS  Google Scholar 

  34. A. Majethiya, B. Patel, P. Vinodkumar, Eur. Phys. J. A 42, 213 (2009)

    Article  ADS  Google Scholar 

  35. K.L. Wang et al., Phys. Rev. D 96, 116016 (2017)

    Article  ADS  Google Scholar 

  36. N. Jiang, X.L. Chen, S.L. Zhu, Phys. Rev. D 92, 054017 (2015)

    Article  ADS  Google Scholar 

  37. H.Y. Cheng, Phys. Lett. B 399, 281 (1997)

    Article  ADS  Google Scholar 

  38. H.Y. Cheng et al., Phys. Rev. D 47, 1030 (1993)

    Article  ADS  Google Scholar 

  39. P. Cho, Phys. Rev. D 50, 3295 (1994)

    Article  ADS  Google Scholar 

  40. $\bar{\ab{P}}$ANDA Collaboration (B. Singh et al.), Phys. Rev. D 95, 032003 (2017)

    Article  ADS  Google Scholar 

  41. $\bar{\ab{P}}$ANDA Collaboration (B. Singh et al.), Nucl. Phys. A 954, 323 (2016)

    Article  Google Scholar 

  42. $\bar{\ab{P}}$ANDA Collaboration (B. Singh et al.), Eur. Phys. J. A 52, 325 (2016)

    Article  Google Scholar 

  43. $\bar{\ab{P}}$ANDA Collaboration (B. Singh et al.), Eur. Phys. J. A 51, 107 (2015)

    Article  Google Scholar 

  44. M.F. Lutz et al., Nucl. Phys. A 948, 93 (2016)

    Article  ADS  Google Scholar 

  45. M. Neubert, Phys. Rep. 245, 259 (1994)

    Article  ADS  Google Scholar 

  46. T.M. Yan et al., Phys. Rev. D 46, 1148 (1992)

    Article  ADS  Google Scholar 

  47. C. Albertus et al., Phys. Rev. D 72, 094022 (2005)

    Article  ADS  Google Scholar 

  48. M.Q. Huang, Y.B. Dai, C.S. Huang, Phys. Rev. D 52, 3986 (1995)

    Article  ADS  Google Scholar 

  49. S. Tawfiq, P.J. ODonnell, J. Krner, Phys. Rev. D 58, 054010 (1998)

    Article  ADS  Google Scholar 

  50. Z.-X. Zhao, Chin. Phys. C 42, 093101 (2018)

    Article  ADS  Google Scholar 

  51. D. Pirjol, T.M. Yan, Phys. Rev. D 56, 5483 (1997)

    Article  ADS  Google Scholar 

  52. S. Agaev, K. Azizi, H. Sundu, EPL 118, 61001 (2017)

    Article  ADS  Google Scholar 

  53. Z. Shah, K. Thakkar, A.K. Rai, Eur. Phys. J. C 76, 530 (2016)

    Article  ADS  Google Scholar 

  54. Z. Shah, A.K. Rai, Eur. Phys. J. C 77, 129 (2017)

    Article  ADS  Google Scholar 

  55. Z. Shah, A.K. Rai, Eur. Phys. J. A 53, 195 (2017)

    Article  ADS  Google Scholar 

  56. Y. Koma, M. Koma, H. Wittig, Phys. Rev. Lett. 97, 122003 (2006)

    Article  ADS  Google Scholar 

  57. V. Kher, A.K. Rai, Chin. Phys. C 42, 083101 (2018)

    Article  ADS  Google Scholar 

  58. V. Kher, N. Devlani, A.K. Rai, Chin. Phys. C 41, 093101 (2017)

    Article  ADS  Google Scholar 

  59. V. Kher, N. Devlani, A.K. Rai, Chin. Phys. C 41, 073101 (2017)

    Article  ADS  Google Scholar 

  60. B. Patel, A.K. Rai, P.C. Vinodkumar, Pramana 70, 797 (2008)

    Article  ADS  Google Scholar 

  61. J. Dey et al., Phys. Lett. B 337, 185 (1994)

    Article  ADS  Google Scholar 

  62. M.B. Wise, Phys. Rev. D 45, R2188 (1992)

    Article  ADS  Google Scholar 

  63. G. Burdman, J.F. Donoghue, Phys. Lett. B 280, 287 (1992)

    Article  ADS  Google Scholar 

  64. Y. Kawakami, M. Harada, arXiv:1804.04872 (2018)

  65. S.L. Zhu, Phys. Rev. D 61, 114019 (2000)

    Article  ADS  Google Scholar 

  66. R. Mizuk et al., Phys. Rev. lett. 94, 122002 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zalak Shah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gandhi, K., Shah, Z. & Rai, A.K. Decay properties of singly charmed baryons. Eur. Phys. J. Plus 133, 512 (2018). https://doi.org/10.1140/epjp/i2018-12318-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12318-1

Navigation