Skip to main content
Log in

Raman spectroscopy and optical properties of GAZO thin films deposited at various substrate temperatures

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

We report the Raman study and optical properties of gallium and aluminium co-doped ZnO (GAZO) thin films deposited at various substrate temperatures by sputtering. The films exhibited Raman peaks at 99 cm-1, 437 cm-1 and 575 cm-1 which were assigned to the ZnO \( E_{2}\) (low), \( E_{2}\) (high) and \( {\rm A}_{1}\) (LO) modes, respectively. The wavelength dependence of the refractive index and the extinction coefficient were described by the Cauchy dispersion model, through theoretical modelling of the transmittance data. The refractive index showed an increasing trend while the extinction coefficient decreased with increasing substrate temperature in the visible region. This was attributed to the relative decrease in transmittance observed at higher substrate temperatures. The dielectric constant (\( \varepsilon\)) , dissipation factor \( (\tan\delta)\) and optical conductivity (\( \sigma\)) values were associated with the films’ high transparency. The Wemple and Didomenico single oscillator dispersion energies ( \( E_{o}\) and \( E_{d}\) increased with substrate temperature which was attributed to the reduction in residual stress, improvement in microstructural order and crystallinity. The static refractive index \( (n_0)\) , optical band gap \( (E_{g})\) , long wavelength dielectric constant ( \( \varepsilon_0\) , the \( M_{-1}\) and \( M_{-3}\) moments of the optical spectra and the non-linear refractive index ( \( n_2\) were determined. Optimum optical properties were obtained in films deposited on heated substrates (75 and \( 100 {}^{\circ}\) C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Chevalier-César, M. Capochichi-Gnambodoe, F. Lin, D. Yu, Y. Leprince-Wang, AIMS Mater. Sci. 3, 562 (2016)

    Article  Google Scholar 

  2. M. Sahal, B. Hartiti, A. Ridah, M. Mollar, B. Marí, Microelectron. J. 39, 1425 (2008)

    Article  Google Scholar 

  3. E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Ceram. Int. 42, 10066 (2016)

    Article  Google Scholar 

  4. E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Heliyon 3, e00285 (2017)

    Article  Google Scholar 

  5. Z.L. Wang, J. Phys.: Condens. Matter 16, R829 (2004)

    ADS  Google Scholar 

  6. W. Yang, F. Wan, S. Chen, C. Jiang, Nanoscale Res. Lett. 4, 1486 (2009)

    Article  ADS  Google Scholar 

  7. D.C. Look, Mater. Sci. Eng. B 80, 383 (2001)

    Article  Google Scholar 

  8. H.J. Zhou, S.S. Wong, ACS Nano 2, 944 (2008)

    Article  Google Scholar 

  9. C. Hariharan, Appl. Catal. A 304, 55 (2006)

    Article  Google Scholar 

  10. E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Appl. Surf. Sci. 390, 570 (2016)

    Article  ADS  Google Scholar 

  11. E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Mater. Res. Bull. 95, 123 (2017)

    Article  Google Scholar 

  12. E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Ceram. Int. 42, 17706 (2016)

    Article  Google Scholar 

  13. C. Charpentier, P. Prod’homme, I. Maurin, M. Chaigneau, P.R. Cabarrocas, Eur. Phys. J. Photovolt. 2, 25002 (2011)

    ADS  Google Scholar 

  14. R.G. Waykar, A.S. Pawbake, R.R. Kulkarni, A.A. Jadhavar, A.M. Funde, V.S. Waman, H.M. Pathan, S.R. Jadkar, J. Mater. Sci. Mater. Electron. 27, 1134 (2016)

    Article  Google Scholar 

  15. S.B. Yahia, L. Znaidi, A. Kanaev, J.-P. Petitet, Spectrochim. Acta Mol. Biomol. Spectrosc. 71, 1234 (2008)

    Article  ADS  Google Scholar 

  16. F. Decremps, J. Pellicer-Porres, A. Marco Saitta, J.C. Chervin, A. Polian, Phys. Rev. B 65, 092101 (2002)

    Article  ADS  Google Scholar 

  17. K.A. Alim, V.A. Fonoberov, A.A. Balandin, Appl. Phys. Lett. 86, 053103 (2005)

    Article  ADS  Google Scholar 

  18. A. Ismail, M.J. Abdullah, J. King Saud Univ. Sci. 25, 209 (2013)

    Article  Google Scholar 

  19. Y.C. Liu, J.H. Hsieh, S.K. Tung, Thin Solid Films 510, 32 (2006)

    Article  ADS  Google Scholar 

  20. Z.-H. Dai, R.-J. Zhang, J. Shao, Y.-M. Chen, Y.-X. Zheng, J.-D. Wu, L.-Y. Chen, J. Korean Phys. Soc. 55, 1227 (2009)

    Article  ADS  Google Scholar 

  21. S.W. Xue, X.T. Zu, W.L. Zhou, H.X. Deng, X. Xiang, L. Zhang, H. Deng, J. Alloys Compd. 448, 21 (2008)

    Article  Google Scholar 

  22. D.-Y. Zhang, P.-P. Wang, R.-I. Murakami, X.-P. Song, Progr. Nat. Sci. Mater. 21, 40 (2011)

    Article  Google Scholar 

  23. M.H. Mamat, M.F. Malek, N.N. Hafizah, M.N. Asiah, A.B. Suriani, A. Mohamed, N. Nafarizal, M.K. Ahmad, M. Rusop, Ceram. Int. 42, 4107 (2016)

    Article  Google Scholar 

  24. A. Bedia, F.Z. Bedia, M. Aillerie, N. Maloufi, B. Benyoucef, Energy Proc. 50, 603 (2014)

    Article  Google Scholar 

  25. N. Hamzaoui, A. Boukhachem, M. Ghamnia, C. Fauquet, Results Phys. 7, 1950 (2017)

    Article  ADS  Google Scholar 

  26. Z.Z. You, G.J. Hua, J. Alloys Compd. 530, 11 (2012)

    Article  Google Scholar 

  27. T.S. Sathiaraj, Microelectron. J. 39, 1444 (2008)

    Article  Google Scholar 

  28. S.K. Ahmmad, M.A. Samee, A. Edukondalu, S. Rahman, Results Phys. 2, 175 (2012)

    Article  ADS  Google Scholar 

  29. K.R. Rajesh, C.S. Menon, Matter Lett. 53, 329 (2002)

    Article  Google Scholar 

  30. J.I. Pankove, Optical Processes in Semiconductors (Dover Publications, Inc., New York, 1975) p. 91

  31. Z.M. Elimat, Radiat. Effects Defects Solids 169, 686 (2014)

    Article  ADS  Google Scholar 

  32. S.H. Wemple, M. DiDomenico, Phys. Rev. B 3, 1338 (1971)

    Article  ADS  Google Scholar 

  33. S.H. Wemple, M. DiDomenico, Phys. Rev. B 1, 193 (1970)

    Article  ADS  Google Scholar 

  34. A.-S. Gadallah, M.M. El-Nahass, Adv. Condens. Matter Phys. 2013, 234546 (2013)

    Article  Google Scholar 

  35. R.H.A. Orainy, J. Sol-Gel Sci. Technol. 70, 47 (2014)

    Article  Google Scholar 

  36. F. Yakuphanoglu, S. Ilican, M. Caglar, Y. Caglar, J. Optoelectron. Adv. Mater. 9, 2180 (2007)

    Google Scholar 

  37. G. Malik, J. Jaiswal, S. Mourya, R. Chandra, J. Appl. Phys. 122, 143105 (2017)

    Article  ADS  Google Scholar 

  38. A.F. Quasrawi, M.M. Shukri Ahmad, Cryst. Res. Technol. 41, 364 (2006)

    Article  Google Scholar 

  39. K. Tanaka, Thin Solid Films 66, 271 (1980)

    Article  ADS  Google Scholar 

  40. R.A. Smith, Semiconductors (Academic Publishers, Calcutta, 1989) pp. 461--463

  41. D. Komaraiah, E. Radha, Y. Vijayakumar, J. Sivakumar, M.V.R. Reddy, R. Sayanna, Mod. Res. Catal. 5, 130 (2016)

    Article  Google Scholar 

  42. H. Tichá, J. Schwarz, L. Tichý, R. Mertens, J. Optoelectron. Adv. Mater. 6, 747 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edigar Muchuweni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muchuweni, E., Sathiaraj, T.S. & Shonhiwa, C. Raman spectroscopy and optical properties of GAZO thin films deposited at various substrate temperatures. Eur. Phys. J. Plus 133, 326 (2018). https://doi.org/10.1140/epjp/i2018-12177-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12177-8

Navigation