Skip to main content
Log in

Tunable broadband reflector and narrowband filter of a dielectric and magnetized cold plasma photonic crystal

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The tunable broadband reflector and the narrowband filter of a periodic structure composed of dielectric and magnetized cold plasma materials have been studied. The optical properties are calculated theoretically using the well-known simple transfer matrix method (TMM). Dispersion relation and transmission spectra of the considered structure with right-hand polarization and left-hand polarization of the magnetized cold plasma materials are studied. The right-hand polarization and the left-hand polarization of the magnetized cold plasma are exhibited due to positive and negative values of the external magnetic field, respectively. The dispersion relation and transmission spectra of the considered periodic structure with the most valuable parameters, like external magnetic field, electron density, and effective collision frequency of the magnetized cold plasma, have been analyzed. The tunable narrow filter for right-hand polarization is obtained with a high value of the external magnetic field and a low value of the electron density. The broadband filter for the left-hand polarization is investigated with a low value of the external magnetic field and a high value of the electron density of the magnetized cold plasma. It is also noted that the impact of variation of effective collision frequency of the magnetized cold plasma is minute in both cases. These calculated results reveal an innovative idea for designing the tunable broadband reflector and narrowband filter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.P. Bykov, Sov. Phys. JETP 35, 269 (1972)

    ADS  Google Scholar 

  2. K. Ohtaka, Phys. Rev. B 19, 5057 (1979)

    Article  ADS  Google Scholar 

  3. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)

    Article  ADS  Google Scholar 

  4. S. John, Phys. Rev. Lett. 58, 2486 (1987)

    Article  ADS  Google Scholar 

  5. J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995)

  6. Y. Fink, J.N. Winn, S. Fan, C. Chen, J. Michel, J.D. Joannopoulos, E.L. Thomas, Science 282, 1679 (1998)

    Article  ADS  Google Scholar 

  7. T.F. Krauss, R.M. De La Rue, Progr. Quant. Electron. 23, 51 (1999)

    Article  ADS  Google Scholar 

  8. D.N. Chigrin, A.V. Lavrinenko, D.A. Yarotsky, S.V. Gaponenko, Appl. Phys. 68, 25 (1999)

    Article  Google Scholar 

  9. K. Sakoda, Optical Properties of Photonic Crystals (Springer, Berlin, 2004)

  10. X. Gu, X.F. Chen, Y.P. Chen, X.L. Zheng, Y.X. Xia, Y.L. Chen, Opt. Commun. 237, 53 (2004)

    Article  ADS  Google Scholar 

  11. S. Massaoudi, A. de Lustrac, I. Huynen, J. Electromagn. Waves Appl. 20, 1967 (2006)

    Article  Google Scholar 

  12. Q.R. Zheng, B.Q. Lin, N.C. Yuan, J. Electromagn. Waves Appl. 21, 199 (2007)

    Article  Google Scholar 

  13. K. Busch, G. von Freymann, S. Linden, S.F. Mingaleev, L. Tkeshelashvili, M. Wegener, Phys. Rep. 444, 101 (2007)

    Article  ADS  Google Scholar 

  14. S.V. Gaponenko, Introduction to Nanophotonics (Cambridge University Press, Cambridge, 2010)

  15. H. Hojo, K. Akimoto, A. Mase, Conference Digest on 28th International Confereuce on Infrared and Millimeter Waves Otsu (2003) pp. 347-348

  16. H. Hitoshi, M. Atushi, J. Plasma Fusion Res. 80, 89 (2004)

    Article  ADS  Google Scholar 

  17. R. Kumar, Plasma Photonic Crystal, in Photonic Crystals - Innovative Systems, Lasers and Waveguides, edited by Alessandro Massaro (InTech, 2012)

  18. H.G. Booker, Cold Plasma Waves (Springer-Verlag, New York, 1984) pp. 23--25

  19. T.C. King, C.C. Yang, P.H. Hseih, T.W. Chang, C.J. Wu, Physica E 67, 7 (2015)

    Article  ADS  Google Scholar 

  20. A.H. Aly, H.A. Elsayed, A.A. Ameen, S.H. Mohamed, Int. J. Mod. Phys. B 31, 1750239 (2017)

    Article  ADS  Google Scholar 

  21. V. Kumar, K.S. Singh, S.P. Ojha, Progr. Electromagn. Res. M 9, 227 (2009)

    Article  Google Scholar 

  22. X.K. Kong, S.B. Liu, H.F. Jhang, C.Z. Li, Phys. Plasmas 17, 103506 (2010)

    Article  ADS  Google Scholar 

  23. A.H. Alyand, D. Mohamed, J. Superconduct. Novel Magn. 28, 1699 (2015)

    Article  Google Scholar 

  24. A. Aghajamali, Appl. Opt. 55, 6336 (2016)

    Article  ADS  Google Scholar 

  25. A.H. Aly, H.A. Elsayed, S.A. El-Naggar, J. Mod. Opt. 64, 74 (2017)

    Article  ADS  Google Scholar 

  26. A.H. Aly, W. Sabra, H.A. Elsayed, Inter. J. Mod. Phys. B 31, 1750123 (2017)

    Article  ADS  Google Scholar 

  27. A.H. Aly, H.A. Elsayed, J. Mod. Opt. 64, 871 (2017)

    Article  ADS  Google Scholar 

  28. A.H. Aly, S.A. El-Naggar, H.A. Elsayed, Opt. Express 23, 15038 (2015)

    Article  ADS  Google Scholar 

  29. A.H. Aly, in International Journal of Advanced Applied Physics Research, Special Issue (2016) pp. 43–47, https://doi.org/10.15379/2408-977X.2016.04

  30. A.H. Aly, W. Sabra, H.A. Elsayed, J. Superconduct. Novel Magn. 26, 553 (2013)

    Article  Google Scholar 

  31. A.H. Aly, H. Sayed, J. Nanophoton. 11, 046020 (2017)

    Article  ADS  Google Scholar 

  32. A.H. Aly, D. Mohamed, H.A. Elsayed, D. Vigneswaran, J. Superconduct. Novel Magn. https://doi.org/10.1007/s10948-018-4716-6 (2018)

  33. P. Yeh, Optical Waves in Layered Media (John Wiley & Sons, New York, 1988)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khem B. Thapa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Kumar, N. & Thapa, K.B. Tunable broadband reflector and narrowband filter of a dielectric and magnetized cold plasma photonic crystal. Eur. Phys. J. Plus 133, 250 (2018). https://doi.org/10.1140/epjp/i2018-12073-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12073-3

Navigation