Skip to main content
Log in

Thermal properties of the exotic X(3872) state via QCD sum rule

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract.

In this work we investigate the X(3872) meson with quantum numbers \( J^{PC}=1^{++}\) in the framework of the thermal QCD sum rules method. We use a diquark-antidiquark current with the corresponding quantum numbers and calculate the two-point correlation function including contributions of non-perturbative condensates up to six dimensions. Analysis of the obtained thermal sum rule allows us to study contributions of a medium to the mass and coupling constant of the X(3872) resonance. Our numerical calculations demonstrate that the mass and the meson-current coupling constant are insensitive to the variation of temperature up to \(T=110\) MeV; however, after this point, they start to fall by increasing the temperature. At deconfinement temperature, the meson-current coupling constants attain roughly to 34% of the vacuum value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belle Collaboration (S.K. Choi et al.), Phys. Rev. Lett. 91, 262001 (2003)

    Article  Google Scholar 

  2. CDF Collaboration (D. Acosta et al.), Phys. Rev. Lett. 93, 072001 (2004)

    Article  Google Scholar 

  3. D0 Collaboration (V.M. Abazov et al.), Phys. Rev. Lett. 93, 162002 (2004)

    Article  Google Scholar 

  4. Belle Collaboration (I. Adachi et al.), Phys. Rev. Lett. 108, 032001 (2012)

    Article  Google Scholar 

  5. Belle Collaboration (K.F. Chen et al.), Phys. Rev. Lett. 100, 112001 (2008)

    Article  Google Scholar 

  6. LHCb Collaboration (R. Aaij et al.), Phys. Rev. Lett. 115, 072001 (2015)

    Article  ADS  Google Scholar 

  7. E.S. Swanson, Phys. Rep. 429, 243 (2006)

    Article  ADS  Google Scholar 

  8. J.M. Richard, Nucl. Phys. (Proc. Suppl.) B 164, 131 (2007)

    Article  ADS  Google Scholar 

  9. S.L. Zhu, Int. J. Mod. Phys. E 17, 283 (2008)

    Article  ADS  Google Scholar 

  10. S. Godfrey, S.L. Olsen, Ann. Rev. Nucl. Part. Sci. 58, 51 (2008)

    Article  ADS  Google Scholar 

  11. M. Nielsen, F.S. Navarra, S.H. Lee, Phys. Rep. 497, 41 (2010)

    Article  ADS  Google Scholar 

  12. W. Chen, S.L. Zhu, Phys. Rev. D 83, 034010 (2011)

    Article  ADS  Google Scholar 

  13. N. Brambilla et al., Eur. Phys. J. C 71, 1534 (2011)

    Article  ADS  Google Scholar 

  14. R.M. Albuquerque, PhD Thesis, Univ. São Paulo (Brazil) and Univ. Montpellier 2 (France), arXiv:1306.4671 [hep-ph]

  15. X. Liu, Chin. Sci. Bull. 59, 3815 (2014)

    Article  Google Scholar 

  16. G.T. Bodwin, E. Braaten, E. Eichten, S.L. Olsen, T.K. Pedlar, J. Russ, FERMILAB-CONF-13-665-T, arXiv:1307.7425 [hep-ph]

  17. M. Nielsen, Nucl. Part. Phys. Proc. 258-259, 139 (2015)

    Article  Google Scholar 

  18. E. Braaten, EPJ Web of Conferences 113, 01015 (2016)

    Article  Google Scholar 

  19. A. Esposito, A.L. Guerrieri, F. Piccinini, A. Pilloni, A.D. Polosa, Int. J. Mod. Phys. A 30, 1530002 (2015)

    Article  ADS  Google Scholar 

  20. H.-X. Chen et al., Phys. Rep. 631, 1 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  21. R.A. Briceno et al., Chin. Phys. C 40, 042001 (2016)

    Article  ADS  Google Scholar 

  22. Z.G. Wang, Eur. Phys. J. C 76, 387 (2016)

    Article  ADS  Google Scholar 

  23. A. Ali, DESY 16-090, arXiv:1605.05954 [hep-ph]

  24. Z.G. Wang, Eur. Phys. J. C 77, 78 (2017)

    Article  ADS  Google Scholar 

  25. Z.G. Wang, Eur. Phys. J. C 76, 657 (2016)

    Article  ADS  Google Scholar 

  26. BaBar Collaboration (B. Aubert et al.), Phys. Rev. D 71, 071103 (2005)

    Article  Google Scholar 

  27. BaBar Collaboration (B. Aubert et al.), Phys. Rev. Lett. 95, 142001 (2005)

    Article  Google Scholar 

  28. LHCb Collaboration (R. Aaij et al.), Nucl. Phys. B 886, 665 (2014)

    Article  Google Scholar 

  29. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 385 (1979)

    Article  ADS  Google Scholar 

  30. L.J. Reinders, H. Rubinstein, S. Yazaki, Phys. Rep. 127, 1 (1985)

    Article  ADS  Google Scholar 

  31. P. Colangelo, A. Khodjamirian, in At the Frontier of Particle Physics, edited by M. Shifman, (World Scientific, 2001) pp. 1495--1576

  32. S. Narison, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 17, 1 (2002)

    Google Scholar 

  33. A.I. Bochkarev, M.E. Shaposhnikov, Nucl. Phys. B 268, 220 (1986)

    Article  ADS  Google Scholar 

  34. T. Hatsuda, Y. Koike, S.H. Lee, Nucl. Phys. B 394, 221 (1993)

    Article  ADS  Google Scholar 

  35. K. Morita, S.H. Lee, Phys. Rev. Lett. 100, 022301 (2008)

    Article  ADS  Google Scholar 

  36. P. Gubler, K. Morita, M. Oka, Phys. Rev. Lett. 107, 092003 (2011)

    Article  ADS  Google Scholar 

  37. K. Azizi, G. Kaya, J. Phys. G 43, 055002 (2016)

    ADS  Google Scholar 

  38. K. Azizi, G. Bozkir, Eur. Phys. J. C 76, 521 (2016)

    Article  ADS  Google Scholar 

  39. K. Azizi, G. Kaya, Eur. Phys. J. Plus 130, 172 (2015)

    Article  Google Scholar 

  40. K. Azizi, N. Katirci, Eur. Phys. J. Plus 131, 163 (2016)

    Article  Google Scholar 

  41. K. Azizi, N. Er, Phys. Rev. D 81, 096001 (2010)

    Article  ADS  Google Scholar 

  42. E.V. Veliev, H. Sundu, K. Azizi, M. Bayar, Phys. Rev. D 82, 056012 (2010)

    Article  ADS  Google Scholar 

  43. K. Azizi, A. Türkan, E. Veli Veliev, H. Sundu, Adv. High Energy Phys. 2015, 794243 (2015)

    Article  Google Scholar 

  44. E.V. Veliev, K. Azizi, H. Sundu, G. Kaya, Rom. J. Phys. 59-63, 140 (2014)

    Google Scholar 

  45. E. Yazici, H. Sundu, E.V. Veliev, Eur. Phys. J. C 76, 89 (2016)

    Article  ADS  Google Scholar 

  46. E.V. Veliev, T.M. Aliev, J. Phys. G 35, 125002 (2008)

    Article  ADS  Google Scholar 

  47. S.S. Agaev, K. Azizi, H. Sundu, Phys. Rev. D 95, 114003 (2017)

    Article  ADS  Google Scholar 

  48. S.S. Agaev, K. Azizi, H. Sundu, Eur. Phys. J. C 77, 321 (2017)

    Article  ADS  Google Scholar 

  49. S.S. Agaev, K. Azizi, H. Sundu, Phys. Rev. D 95, 034008 (2017)

    Article  ADS  Google Scholar 

  50. S.S. Agaev, K. Azizi, B. Barsbay, H. Sundu, Eur. Phys. J. A 53, 11 (2017)

    Article  ADS  Google Scholar 

  51. S.S. Agaev, K. Azizi, H. Sundu, Phys. Rev. D 93, 114036 (2016)

    Article  ADS  Google Scholar 

  52. H. Sundu, SDU J. Nat. Appl. Sci. 20, 448 (2016)

    Google Scholar 

  53. L.M. Abreu, K.P. Khemchandani, A. Martínez Torres, F.S. Navarra, M. Nielsen, A.L. Vasconcellos, Phys. Rev. D 95, 096002 (2017)

    Article  ADS  Google Scholar 

  54. ExHIC Collaboration (S. Cho et al.), Prog. Part. Nucl. Phys. 95, 279 (2017)

    Article  Google Scholar 

  55. L.M. Abreu, K.P. Khemchandani, A.M. Torres, F.S. Navarra, M. Nielsen, J. Phys. Conf. Ser. 736, 012026 (2016)

    Article  Google Scholar 

  56. L.M. Abreu, K.P. Khemchandani, A. Martinez Torres, F.S. Navarra, M. Nielsen, Phys. Lett. B 761, 303 (2016)

    Article  ADS  Google Scholar 

  57. Z.G. Wang, Eur. Phys. J. C 77, 432 (2017)

    Article  ADS  Google Scholar 

  58. Z.G. Wang, Eur. Phys. J. C 77, 174 (2017)

    Article  ADS  Google Scholar 

  59. Z.G. Wang, Chin. Phys. C 41, 083103 (2017)

    Article  ADS  Google Scholar 

  60. R.D. Matheus, S. Narison, M. Nielsen, J.M. Richard, Phys. Rev. D 75, 014005 (2007)

    Article  ADS  Google Scholar 

  61. Z.G. Wang, Z.C. Liu, X.H. Zhang, Eur. Phys. J. C 64, 373 (2009)

    Article  ADS  Google Scholar 

  62. S. Mallik, Phys. Lett. B 416, 373 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  63. S.S. Agaev, K. Azizi, H. Sundu, Phys. Rev. D 93, 074002 (2016)

    Article  ADS  Google Scholar 

  64. Particle Data Group Collaboration (C. Patrignani et al.), Chin. Phys. C 40, 100001 (2016) and 2017 update

    Article  ADS  Google Scholar 

  65. A. Ayala, A. Bashir, C.A. Dominguez, E. Gutierrez, M. Loewe, A. Raya, Phys. Rev. D 84, 056004 (2011)

    Article  ADS  Google Scholar 

  66. A. Bazavov et al., Phys. Rev. D 80, 014504 (2009)

    Article  ADS  Google Scholar 

  67. M. Cheng et al., Phys. Rev. D 81, 054504 (2010)

    Article  ADS  Google Scholar 

  68. M. Cheng et al., Phys. Rev. D 77, 014511 (2008) arXiv:0710.0354 [hep-lat]

    Article  ADS  Google Scholar 

  69. A. Ayala, C.A. Dominguez, M. Loewe, Y. Zhang, Phys. Rev. D 86, 114036 (2012)

    Article  ADS  Google Scholar 

  70. C.A. Dominguez, M. Loewe, J.C. Rojas, Y. Zhang, Phys. Rev. D 81, 014007 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Sundu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veli Veliev, E., Günaydın, S. & Sundu, H. Thermal properties of the exotic X(3872) state via QCD sum rule. Eur. Phys. J. Plus 133, 139 (2018). https://doi.org/10.1140/epjp/i2018-11977-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-11977-0

Navigation