Skip to main content
Log in

Lump solutions and interaction phenomenon to the third-order nonlinear evolution equation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this work, the lump solution and the kink solitary wave solution from the (2 + 1) -dimensional third-order evolution equation, using the Hirota bilinear method are obtained through symbolic computation with Maple. We have assumed that the lump solution is centered at the origin, when t = 0 . By considering a mixing positive quadratic function with exponential function, as well as a mixing positive quadratic function with hyperbolic cosine function, interaction solutions like lump-exponential and lump-hyperbolic cosine are presented. A completely non-elastic interaction between a lump and kink soliton is observed, showing that a lump solution can be swallowed by a kink soliton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.N. Ganshin, V.B.E mov, L.P. Mezhov-Deglin, P.V. McClintock, Phys. Rev. Lett. 101, 265303 (2008)

    Article  Google Scholar 

  2. W.M. Moslem, Phys. Plasmas 18, 032301 (2011)

    Article  ADS  Google Scholar 

  3. H. Bailung, S.K. Sharma, Y. Nakamura, Phys. Rev. Lett. 107, 255005 (2011)

    Article  ADS  Google Scholar 

  4. C. Kharif, E. Pelinovsky, A. Slunyaev, Rogue Waves in the Ocean (Springer, Berlin, 2009)

  5. D.R. Sollim, C. Ropers, P. Koonath, B. Jalali, Nature (London) 450, 1054 (2007)

    Article  ADS  Google Scholar 

  6. B. Kibler, J. Fatome, C. Finot et al., Nat. Phys. 6, 790 (2010)

    Article  Google Scholar 

  7. C. Kharif, E. Pelinovsky, A. Slunyaev, Rogue Waves in the Ocean (Springer, 2009)

  8. K. Kimiaki, W. Miki, Prog. Theor. Phys. 53, 1652 (1975)

    Article  ADS  Google Scholar 

  9. C.H. Gu, H.S. Hu, Z.X. Zhou, Darboux Transformation in Soliton Theory and Its Geometric Applications (Shanghai Science and Technology Press, Shanghai, 2005)

  10. A.K. Pogrebkov, Theor. Math. Phys. 181, 1585 (2014)

    Article  Google Scholar 

  11. M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge University Press, Cambridge, 1991)

  12. S.Y. Lou, H.Y. Ruan, D. Chen, W.Z.J. Fand Chen, Phys. A: Math. Gen. 24, 1455 (1991)

    Article  ADS  Google Scholar 

  13. M. Jimbo, T. Miwa, Publ. Res. Inst. Math. Sci. Kyato Univ. 19, 943 (1983)

    Article  Google Scholar 

  14. X.Y. Tang, S.Y. Lou, Chin. Phys. Lett. 20, 335 (2003)

    Article  ADS  Google Scholar 

  15. M.R. Miurs, Bäcklund Transformation (Springer, New York, 1978)

  16. R. Hirota, J. Satsuma, Prog. Theor. Phys. 57, 797 (1977)

    Article  ADS  Google Scholar 

  17. M. Fokou, T.C. Kofane, A. Mohamadou, E. Yomba, Non-linear Dyn. 83, 2461 (2016)

    Article  Google Scholar 

  18. X. Zhao, L. Wang, W. Sun, Chaos, Solitons Fractals 28, 448 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  19. E.G. Fan, H. Zhang, Phys. Lett. A 246, 403 (1998)

    Article  ADS  Google Scholar 

  20. J. Weiss, M. Tabor, G.J. Carnevale, Math. Phys. 24, 522 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  21. M. Jimbo, M.D. Kruskal, T. Miwa, Phys. Lett. A 92, 59 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  22. P.R. Gordoa, A. Pickering, Commun. Nonlinear Sci. Numer. Simul. 17, 489 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  23. E.A.B. Abdel-Salam, D. Kaya, Z. Naturforsch. 64a, 1 (2009)

    ADS  Google Scholar 

  24. M.A. Abdou, Chaos, Solitons Fractals 31, 95 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  25. J.H. He, Chaos Solitons Fractals 30, 700 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  26. J.H. He, Int. J. Mod. Phys. B 20, 1141 (2006)

    Article  ADS  Google Scholar 

  27. C.J. Wang, Z.D. Dai, G. Mu, S.Q. Lin, Commun. Theor. Phys. 52, 862 (2009)

    Article  ADS  Google Scholar 

  28. W.X. Ma, T.W. Huang, Y. Zhang, Phys. Scr. 82, 065003 (2010)

    Article  ADS  Google Scholar 

  29. C.J. Wang, Z.D. Dai, Appl. Math. Comput. 235, 332 (2014)

    MathSciNet  Google Scholar 

  30. E.A.B. Abdel-Salam, Z. Naturforsch. 64, 639 (2009)

    ADS  Google Scholar 

  31. J.S. Duan, R. Rach, A.W. Wazwaz, Int. J. Non-Linear Mech. 49, 159 (2013)

    Article  ADS  Google Scholar 

  32. K.A. Gorshkov, D.E. Pelinovsky, Y.A. Stepanyants, JETP 77, 237 (1993)

    ADS  Google Scholar 

  33. S.V. Manakov, V.E. Zakhorov, L.A. Bordag et al., Phys. Lett. 63, 205 (1977)

    Article  Google Scholar 

  34. R.S. Johnson, S. Thompson, Phys. Lett. A 66, 279 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  35. J. Satsuma, M.J. Ablowitz, J. Math. Phys. 20, 1496 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  36. D.J. Kaup, J. Math. Phys. 22, 1176 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  37. C.R. Gilson, J.J.C. Nimmo, Phys. Lett. A 147, 472 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  38. K. Imai, Prog. Theor. Phys. 98, 1013 (1997)

    Article  ADS  Google Scholar 

  39. Z. Lu, E.M. Tian, R. Grimshaw, Wave Motion 40, 123 (2004)

    Article  MathSciNet  Google Scholar 

  40. W.X. Ma, Y. You, Trans. Am. Math. Soc. 357, 1753 (2005)

    Article  Google Scholar 

  41. W.X. Ma, C.X. Li, J. He, Nonlinear Anal. 70, 4245 (2009)

    Article  MathSciNet  Google Scholar 

  42. A.S. Fokas, D.E. Pelinovsky, C. Sulaem, Phys. D 152-153, 189 (2001)

    Article  Google Scholar 

  43. H.E. Nistazakis, D.J. Frantzeskakis, B.A. Malomed, Phys. Rev. E 64, 026604 (2001)

    Article  ADS  Google Scholar 

  44. C.J. Wang, Z.D. Dai, C.F. Liu, Mediterr. J. Math. 13, 1087 (2016)

    Article  MathSciNet  Google Scholar 

  45. W. Tan, Z.D. Dai, Nonlinear Dyn. 85, 817 (2016)

    Article  Google Scholar 

  46. L. Cheng, Y. Zhang, Mod. Phys. Lett. B 30, 1724224 (2016)

    MathSciNet  Google Scholar 

  47. H.-Q. Zhang, W.-X. Ma, Nonlinear Dyn. 87, 2305 (2017)

    Article  Google Scholar 

  48. W.-X. Ma, Nonlinear Sci. 2, 140 (2011)

    Google Scholar 

  49. H.-Q. Zhang, X.-L. Liu, L.-L. Wen, Z. Naturforsch. 71a, 95 (2016)

    Google Scholar 

  50. L.-L. Wen, H.-Q. Zhang, Nonlinear Dyn. 86, 877 (2016)

    Article  Google Scholar 

  51. H.-Q. Zhang, J. Chen, Mod. Phys. Lett. B 30, 1650106 (2016)

    Article  ADS  Google Scholar 

  52. C. Becker, K. Sengstock, P. Schmelcher, P.G. Kevrekidis, R.C. González, New J. Phys. 15, 113028 (2013)

    Article  ADS  Google Scholar 

  53. M. Fokou, T.C. Kofane, A. Mohamadou, E. Yomba, submitted to Nonlinear Dyn. (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fokou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kofane, T.C., Fokou, M., Mohamadou, A. et al. Lump solutions and interaction phenomenon to the third-order nonlinear evolution equation. Eur. Phys. J. Plus 132, 465 (2017). https://doi.org/10.1140/epjp/i2017-11747-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11747-6

Navigation