Skip to main content
Log in

Study of blood flow inside the stenosis vessel under the effect of solenoid magnetic field using ferrohydrodynamics principles

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper, biomagnetic blood flow in the stenosis vessel under the effect of the solenoid magnetic field is studied using the ferrohydrodynamics (FHD) model. The parabolic profile is considered at an inlet of the axisymmetric stenosis vessel. Blood is modeled as electrically non-conducting, Newtonian and homogeneous fluid. Finite volume and the SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm are utilized to discretize governing equations. The investigation is studied at different magnetic numbers (\( Mn_{F}=164\), 328, 1640 and 3280) and the number of the coil loops (three, five and nine loops). Results indicate an increase in heat transfer, wall shear stress and energy loss (pressure drop) with an increment in the magnetic number (ratio of Kelvin force to dynamic pressure force), arising from the FHD, and the number of solenoid loops. Furthermore, the flow pattern is affected by the magnetic field, and the temperature of blood can be decreased up to \(1.48 {}^{\circ}{\rm C}\) under the effect of the solenoid magnetic field with nine loops and reference magnetic field (\( B_{0}\)) of 2 tesla.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Badimon, G. Vilahur, J. Int. Med. 276, 618 (2014)

    Article  Google Scholar 

  2. G. Vilahur, J.J. Badimon, R. Bugiardini, L. Badimon, Eur. Heart J. Suppl. 16, A7 (2014)

    Article  Google Scholar 

  3. S.P. Wille, Appl. Math. Model. 4, 483 (1980)

    Article  Google Scholar 

  4. S.I. Bernad, R. Susan-Resiga, E. Bernad, D. Gaita, Timisoara Med. J. 2, 141 (2005)

    Google Scholar 

  5. J. Jung, A. Hassanein, Med. Eng. Phys. 30, 91 (2008)

    Article  Google Scholar 

  6. N.K. Verma, S. Mishra, S.U. Siddiqui, R.S. Gupta, Appl. Math. 2, 764 (2011)

    Article  MathSciNet  Google Scholar 

  7. J. Venkatesan, D. Sankar, K. Hemalatha, Y. Yatim, J. Appl. Math. 2013, 583809 (2013)

    Article  Google Scholar 

  8. J.M. Zhang, L. Zhong, T. Luo, Y. Huo, S.Y. Tan, A.S.L. Wong, B. Su, M. Wan, X. Zhao, G.S. Kassab et al., BioMed Res. Int. 2014, 514729 (2014)

    Google Scholar 

  9. R. Feng, M. Xenos, G. Girdhar, W. Kang, J.W. Davenport, Y. Deng, D. Bluestein, Biomech. Model. Mechanobiol. 11, 119 (2011)

    Article  Google Scholar 

  10. M. Mehrabi, S. Setayeshi, Math. Probl. Eng. 2012, 804765 (2012)

    Article  Google Scholar 

  11. S.M. Razavi, M. Seyedein, P. Shahabi, S. Seyedein, Int. J. Ind. Eng. Product. Res. 17, 37 (2006)

    Google Scholar 

  12. P. Berger, N.B. Adelman, K.J. Beckman, D.J. Campbell, A.B. Ellis, G.C. Lisensky, J. Chem. Educ. 76, 943 (1999)

    Article  Google Scholar 

  13. Y. Haik, V. Pai, C. Chen, Development of bio-magnetic fluid dynamics, in Fluid Dynamics at Interfaces, edited by W. Shyy, R. Narayanan (Cambridge University Press, 1999) chapt. 34, pp. 439--452

  14. T. Higashi, A. Yamagishi, T. Takeuchi, N. Kawaguchi, S. Sagawa, S. Onishi, M. Date, Blood 82, 1328 (1993)

    Google Scholar 

  15. S. Kenjereš, Int. J. Heat Fluid Flow 29, 752 (2008)

    Article  Google Scholar 

  16. T. Frauenrath, K. Fuchs, M.A. Dieringer, C. zerdem, N. Patel, W. Renz, A. Greiser, T. Elgeti, T. Niendorf, J. Magn. Reson. Imaging 36, 364 (2012)

    Article  Google Scholar 

  17. G.M. Nijm, S. Swiryn, A.C. Larson, A.V. Sahakian, Med. Biol. Eng. Comput. 46, 729 (2008)

    Article  Google Scholar 

  18. B. Nordell, F. Sthlberg, A. Ericsson, C. Ranta, Magn. Reson. Imaging 6, 695 (1988)

    Article  Google Scholar 

  19. R.P. Klucznik, D.A. Carrier, R. Pyka, R.W. Haid, Radiology 187, 855 (1993)

    Article  Google Scholar 

  20. E.E. Tzirtzilakis, M.A. Xenos, Meccanica 48, 187 (2012)

    Article  Google Scholar 

  21. H. Aminfar, M. Mohammadpourfard, S.A. Zonouzi, J. Magn. & Magn. Mater. 327, 31 (2013)

    Article  ADS  Google Scholar 

  22. M. Sheikholeslami, M.M. Rashidi, J. Taiwan Inst. Chem. Eng. 56, 6 (2015)

    Article  Google Scholar 

  23. A. Ghofrani, M. Dibaei, A.H. Sima, M. Shafii, Exp. Therm. Fluid Sci. 49, 193 (2013)

    Article  Google Scholar 

  24. S.A. Khashan, Y. Haik, Phys. Fluids 18, 113601 (2006)

    Article  ADS  Google Scholar 

  25. E.E. Tzirtzilakis, Physica D 237, 66 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  26. J.C. Misra, A. Sinha, G.C. Shit, Int. J. Biomath. 04, 207 (2011)

    Article  Google Scholar 

  27. S. Bose, M. Banerjee, J. Magn. & Magn. Mater. 385, 32 (2015)

    Article  ADS  Google Scholar 

  28. E.E. Tzirtzilakis, Phys. Fluids 17, 077103 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  29. E.E. Tzirtzilakis, Phys. Fluids 27, 061902 (2015)

    Article  ADS  Google Scholar 

  30. S. Patankar, Numerical Heat Transfer and Fluid Flow (CRC Press, 1980)

  31. H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method (Pearson, Prentice Hall, 2007)

  32. H. Matsuki, K. Yamasawa, K. Murakami, IEEE Trans. Magn. 13, 1143 (1977)

    Article  ADS  Google Scholar 

  33. J. Chato, J. Biomech. Eng. 102, 110 (1980)

    Article  Google Scholar 

  34. E.A. Finol, C.H. Amon, J. Biomech. Eng. 123, 474 (2001)

    Article  Google Scholar 

  35. Y. Haik, C.J. Chen, J. Chatterjee, J. Vis. 5, 187 (2002)

    Article  Google Scholar 

  36. S.A. Khashan, Y. Haik, Phys. Fluids 18, 113601 (2006)

    Article  ADS  Google Scholar 

  37. E.E. Tzirtzilakis, Commun. Numer. Methods Eng. 24, 683 (2008)

    Article  MathSciNet  Google Scholar 

  38. R. Ganguly, S. Sen, I.K. Puri, J. Magn. & Magn. Mater. 271, 63 (2004)

    Article  ADS  Google Scholar 

  39. R. Ganguly, A.P. Gaind, S. Sen, I.K. Puri, J. Magn. & Magn. Mater. 289, 331 (2005)

    Article  ADS  Google Scholar 

  40. R. Skalak, S. Chien, R. Mates, Handbook of Bioengineering (McGraw-Hill, New York, 1987)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saber Yekani Motlagh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badfar, H., Motlagh, S.Y. & Sharifi, A. Study of blood flow inside the stenosis vessel under the effect of solenoid magnetic field using ferrohydrodynamics principles. Eur. Phys. J. Plus 132, 440 (2017). https://doi.org/10.1140/epjp/i2017-11685-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11685-3

Navigation