Skip to main content
Log in

Two dissimilar approaches to dynamical systems on hyper MV -algebras and their information entropy

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Measuring the flow of information that is related to the evolution of a system which is modeled by applying a mathematical structure is of capital significance for science and usually for mathematics itself. Regarding this fact, a major issue in concern with hyperstructures is their dynamics and the complexity of the varied possible dynamics that exist over them. Notably, the dynamics and uncertainty of hyper MV -algebras which are hyperstructures and extensions of a central tool in infinite-valued Lukasiewicz propositional calculus that models many valued logics are of primary concern. Tackling this problem, in this paper we focus on the subject of dynamical systems on hyper MV -algebras and their entropy. In this respect, we adopt two varied approaches. One is the set-based approach in which hyper MV -algebra dynamical systems are developed by employing set functions and set partitions. By the other method that is based on points and point partitions, we establish the concept of hyper injective dynamical systems on hyper MV -algebras. Next, we study the notion of entropy for both kinds of systems. Furthermore, we consider essential ergodic characteristics of those systems and their entropy. In particular, we introduce the concept of isomorphic hyper injective and hyper MV -algebra dynamical systems, and we demonstrate that isomorphic systems have the same entropy. We present a couple of theorems in order to help calculate entropy. In particular, we prove a contemporary version of addition and Kolmogorov-Sinai Theorems. Furthermore, we provide a comparison between the indispensable properties of hyper injective and semi-independent dynamical systems. Specifically, we present and prove theorems that draw comparisons between the entropies of such systems. Lastly, we discuss some possible relationships between the theories of hyper MV -algebra and MV -algebra dynamical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Jing, Procedia 24, 2105 (2012)

    Article  Google Scholar 

  2. J. Petrovičová, Fuzzy Sets Syst. 121, 347 (2001)

    Article  Google Scholar 

  3. B. Riečan, Int. J. Theor. Phys. 44, 1041 (2005)

    Article  ADS  Google Scholar 

  4. R.J. Brown, Trans. Amer. Math. Soc. 359, 1445 (2007)

    Article  MathSciNet  Google Scholar 

  5. M. Ebrahimi, N. Mohamadi, Appl. Sci. 12, 1 (2010)

    MathSciNet  Google Scholar 

  6. D. Dikranjan, A. Giordano-Bruno, Adv. Math. 298, 612 (2016)

    Article  MathSciNet  Google Scholar 

  7. D. Dikranjan, A. Giordano-Bruno, Topology Appl. 159, 2980 (2012)

    Article  MathSciNet  Google Scholar 

  8. D. Dikranjan, M. Sanchis, S. Virili, Topol. Appl. 159, 1916 (2012)

    Article  Google Scholar 

  9. A. Giordano-Bruno, L. Salce, Arab. J. Math. 1, 69 (2012)

    Article  Google Scholar 

  10. M. Ebrahimi, U. Mohamadi, Cankaya Univ. J. Sci. Eng. 9, 167 (2012)

    Google Scholar 

  11. D. Dikranjan, K. Gongb, P. Zanardo, Linear Algebra Appl. 43, 1894 (2013)

    Article  Google Scholar 

  12. A.M. Scarfone, Entropy 15, 624 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  13. M. Ebrahimi, B. Musapour, Cankaya Univ. J. Sci. Eng. 10, 137 (2013)

    Google Scholar 

  14. N.P. Chung, A. Thom, Trans. Amer. Math. Soc. 367, 8579 (2015)

    Article  MathSciNet  Google Scholar 

  15. S. Kim, Linear Algebra Appl. 438, 2475 (2013)

    Article  MathSciNet  Google Scholar 

  16. O.A. Kittaneha, M.A.U. Khana, M. Akbara, H.A. Bayoudb, Amer. Stat. 70, 18 (2016)

    Article  Google Scholar 

  17. A. Haghani, X. Li, W. Qiao, Z.h. Sun, Transp. Policy 27, 85 (2013)

    Article  Google Scholar 

  18. F. Dubois, Comput. Math. Appl. 65, 142 (2013)

    Article  MathSciNet  Google Scholar 

  19. L. Han, F. Escolano, E.R. Hancock, R.C. Wilson, Pattern Recog. Lett. 33, 1958 (2012)

    Article  Google Scholar 

  20. K. Li, Cha Liu, Che Liu, F. Liu, S. Liu, L. Zhao, D. Zheng, Comput. Biol. Med. 43, 100 (2013)

    Article  Google Scholar 

  21. H. Eguiraun, K. López-de-Ipiña, I. Martinez, Entropy 16, 6133 (2014)

    Article  ADS  Google Scholar 

  22. R. Sharma, R.B. Pachori, U.R. Acharya, Entropy 17, 669 (2015)

    Article  ADS  Google Scholar 

  23. F. Marty, Sur une generalization de la notion de group, in 8th Congress Math. Scandenaves, Stockholm (1934) pp. 45--49

  24. J. Chvalina, S. Hošková-Mayerová, Ratio Math. 23, 3 (2012)

    Google Scholar 

  25. I. Cristea, B. Davvaz, Inf. Sci. 180, 1506 (2010)

    Article  Google Scholar 

  26. I. Cristea, S. Hošková, Iran. J. Fuzzy Syst. 6, 11 (2009)

    MathSciNet  Google Scholar 

  27. M. Ebrahimi, A. Mehrpooya, An application of geometry in algebra: uncertainty of hyper MV-algebras, in Proceedings of the 7th seminar on geometry & topology, Tehran (2014) pp. 529--534

  28. S. Hošková, A. Maturo, Stud. Fuzziness Soft Comput. 357, 103 (2017)

    Google Scholar 

  29. S. Hošková, J. Chvalina, P. Racková, J. Basic Sci. 4, 43 (2008)

    Google Scholar 

  30. S. Hošková, J. Chvalina, P. Racková, J. Basic Sci. 4, 55 (2008)

    Google Scholar 

  31. M. Novák, Eur. J. Combinatorics 44, 274 (2015)

    Article  Google Scholar 

  32. M. Novák, Stiint Univ. Ovidius Constanţa Ser. Math. 22, 147 (2014)

    Google Scholar 

  33. P. Corsini, V. Leoreanu, Applications of Hyperstructure Theory, Advances in Mathematics (Kluwer Academic Publishers, Boston, 2003)

  34. B. Davvaz, A. Dehghan Nezhad, A. Benvidi, Commun. Math. Comput. Chem. 67, 55 (2012)

    Google Scholar 

  35. B. Davvaz, V. Leoreanu-Fotea, Hyperring Theory and Applications (International Academic Press, USA, 2007)

  36. P. Walters, An Introduction to Ergodic Theory (Springer-Verlag, New York, 1982)

  37. A. Dvurečenskiji, M. Hyčko, Hyper effect algebras. Fuzzy Sets Syst. (2016) DOI:10.1016/j.fss.2016.12.012

  38. R.L. Cignoli, I.M. D’Ottaviano, D. Mundici, Applications of Hyperstructure Theory, 1st ed. (Springer, Netherlands, 2007)

  39. A. Mehrpooya, M. Ebrahimi, B. Davvaz, Soft Comput. 20, 1263 (2016)

    Article  Google Scholar 

  40. R. Ameri, M. Amiri-Bideshki, A.B. Saeid, S. Hošková-Mayerová, Stiint Univ. Ovidius Constanţa Ser. Math. 24, 15 (2016)

    Google Scholar 

  41. R. Ameri, A. Kordi, S. Sárka-Mayerová, Stiint Univ. Ovidius Constanţa Ser. Math. 25, 5 (2017)

    Google Scholar 

  42. J. Chvalina, S. Hošková-Mayerová, Stiint Univ. Ovidius Constanţa Ser. Math. 22, 85 (2014)

    Google Scholar 

  43. J. Chvalina, S. Hošková-Mayerová, A.D. Nezhad, Stiint Univ. Ovidius Constanţa Ser. Math. 21, 59 (2013)

    Google Scholar 

  44. S. Ghorbani, E. Eslami, A. Hasankhani, Math. Jpn. 3, 371 (2007)

    Google Scholar 

  45. S. Rasouli, D. Heidari, B. Davvaz, J. Multiple-Valued Logic Soft Comput. 15, 517 (2009)

    MathSciNet  Google Scholar 

  46. S. Rasouli, B. Davvaz, J. Multiple-Valued Logic Soft Comput. 17, 47 (2011)

    MathSciNet  Google Scholar 

  47. Y.B. Jun, M.S. Kang, H.S. Kim, Commun. Kor. Math. Soc. 25, 537 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel Mehrpooya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrpooya, A., Ebrahimi, M. & Davvaz, B. Two dissimilar approaches to dynamical systems on hyper MV -algebras and their information entropy. Eur. Phys. J. Plus 132, 379 (2017). https://doi.org/10.1140/epjp/i2017-11656-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11656-8

Navigation