Skip to main content
Log in

Effect of anisotropy on the generalized Chaplygin gas scalar field and its interaction with other dark energy models

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this work, we establish a correspondence between the interacting holographic, new agegraphic dark energy and generalized Chaplygin gas model in Bianchi type I universe. Then, we reconstruct the potential of the scalar field which describes the generalized Chaplygin cosmology. Cosmological solutions are obtained when the kinetic energy of the phantom field is of the order of the anisotropy and dominates over the potential energy of the field. We investigate observational constraints on the generalized Chaplygin gas, holographic and new agegraphic dark energy models as the unification of dark matter and dark energy, by using the latest observational data. To do this we focus on observational determinations of the expansion history H(z) . It is shown that the HDE model is better than the NADE and generalized Chaplygin gas models in an anisotropic universe. Then, we calculate the evolution of density perturbations in the linear regime for three models of dark energy and compare with the results of the \( \Lambda\) CDM model. Finally, the analysis shows that the increase in anisotropy leads to more correspondence between the dark energy scalar field model and observational data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.G. Riess et al., Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  2. S. Perlmutter, G. Aldering, G. Goldhaber et al., Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  3. P. de Bernardis, P.A.R. Ade, J.J. Bock et al., Nature 404, 955 (2000)

    Article  ADS  Google Scholar 

  4. R.A. Knop, G. Aldering, R. Amanullah et al., Astrophys. J. 598, 102 (2003)

    Article  ADS  Google Scholar 

  5. N. Kaiser, Mon. Not. R. Acad. Sci. 438, 2456 (2014)

    Article  ADS  Google Scholar 

  6. A.W. Allen, R.W. Schmidt, A.C. Fabian, Mon. Not. R. Acad. Soc. 334, L11 (2002)

    Article  ADS  Google Scholar 

  7. G. Efstathiou, J.R. Bond, Mon. Not. R. Acad. Soc. 304, 75 (1999)

    Article  ADS  Google Scholar 

  8. V. Sahni, A.A. Starobinsky, Int. J. Mod. Phys. D 15, 2105 (2006)

    Article  ADS  Google Scholar 

  9. M. Li, X.D. Li, S. Wang, Y. Wang, Commun. Theor. Phys. 56, 525 (2011)

    Article  ADS  Google Scholar 

  10. E.V. Linder, Phys. Rev. Lett. 90, 091301 (2003)

    Article  ADS  Google Scholar 

  11. R.Y. Guo, X. Zhang, Eur. Phys. J. C 76, 163 (2016)

    Article  ADS  Google Scholar 

  12. V. Sahni, A.A. Starobinsky, Int. J. Mod. Phys. D 9, 373 (2000)

    ADS  Google Scholar 

  13. T. Padmanabhan, Phys. Rep. 380, 235 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  14. P.J.E. Peebles, B. Ratra, Rev. Mod. Phys. 75, 559 (2003)

    Article  ADS  Google Scholar 

  15. E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006)

    Article  ADS  Google Scholar 

  16. P. Horava, D. Minic, Phys. Rev. Lett. 85, 1610 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  17. S.D. Thomas, Phys. Rev. Lett. 89, 081301 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  18. L. Susskind, J. Math. Phys. 36, 6377 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  19. A.G. Cohen, D.B. Kaplan, A.E. Nelson, Phys. Rev. Lett. 82, 4971 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  20. M. Li, Phys. Lett. B 603, 1 (2004)

    Article  ADS  Google Scholar 

  21. K. Enqvist, M.S. Sloth, Phys. Rev. Lett. 93, 221302 (2004)

    Article  ADS  Google Scholar 

  22. Q.G. Huang, Y.G. Gong, JCAP 08, 006 (2004)

    Article  ADS  Google Scholar 

  23. E. Elizalde, S. Nojiri, S.D. Odintsov, P. Wang, Phys. Rev. D 71, 103504 (2005)

    Article  ADS  Google Scholar 

  24. X. Zhang, F.Q. Wu, Phys. Rev. D 72, 043524 (2005)

    Article  ADS  Google Scholar 

  25. J.P. Beltran Almeida, J.G. Pereira, Phys. Lett. B 636, 75 (2006)

    Article  ADS  Google Scholar 

  26. L. Xu, JCAP 09, 016 (2009)

    Article  ADS  Google Scholar 

  27. H. Wei, S.N. Zhang, Phys. Rev. D 76, 063003 (2007)

    Article  ADS  Google Scholar 

  28. R.G. Cai, Phys. Lett. B 657, 228 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  29. H. Wei, R.G. Cai, Phys. Lett. B 660, 113 (2008)

    Article  ADS  Google Scholar 

  30. H. Wei, R.G. Cai, Phys. Lett. B 663, 1 (2008)

    Article  ADS  Google Scholar 

  31. J.P. Wu, D.Z. Ma, Y. Ling, Phys. Lett. B 663, 152 (2008)

    Article  ADS  Google Scholar 

  32. I.P. Neupane, Phys. Lett. B 673, 111 (2009)

    Article  ADS  Google Scholar 

  33. A.Yu. Kamenshchik, U. Moschella, V. Pasquier, Phys. Lett. B 511, 265 (2001)

    Article  ADS  Google Scholar 

  34. O. Bertolami, A.A. Sen, S. Sen, P.T. Silva, Mon. Not. R. Acad. Soc. 353, 329 (2004)

    Article  ADS  Google Scholar 

  35. U. Debnath, A. Banerjee, S. Chakraborty, Class. Quantum Grav. 21, 5609 (2004)

    Article  ADS  Google Scholar 

  36. M. Jamil, M.A. Rashid, Eur. Phys. J. C 60, 141 (2009)

    Article  ADS  Google Scholar 

  37. X. Zhang, Phys. Lett. B 648, 1 (2007)

    Article  ADS  Google Scholar 

  38. X. Zhang, F.Q. Wu, Phys. Rev. D 76, 023502 (2007)

    Article  ADS  Google Scholar 

  39. K. Karami, M.S. Khaledian, F. Felegary, Z. Azarmi, Phys. Lett. B 686, 216 (2010)

    Article  ADS  Google Scholar 

  40. A. Sheykhi, Phys. Lett. B 682, 329 (2010)

    Article  ADS  Google Scholar 

  41. R.R. Caldwell, Phys. Lett. B 545, 23 (2002)

    Article  ADS  Google Scholar 

  42. P.K. Townsend, M.N.R. Wohlfarth, Phys. Rev. Lett. 91, 061302 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  43. T.R. Jaffe et al., Astrophys. J. 643, 616 (2006)

    Article  ADS  Google Scholar 

  44. L. Campanelli et al., Phys. Rev. Lett. 97, 131302 (2006)

    Article  ADS  Google Scholar 

  45. H. Hossienkhani, Astrophys. Space Sci. 361, 136 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  46. F. Barati, Int. J. Theor. Phys. 55, 2189 (2015)

    Article  Google Scholar 

  47. N. Azimi, F. Barati, Int. J. Theor. Phys. 55, 3318 (2016)

    Article  Google Scholar 

  48. T.M. Davis, E. Mortsell, J. Sollerman et al., Astrophys. J. 666, 716 (2007)

    Article  ADS  Google Scholar 

  49. D.N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003)

    Article  ADS  Google Scholar 

  50. Planck Collaboration (P.A.R. Ade), arXiv:1303.5076

  51. A.A. Sen, D. Pavón, Phys. Lett. B 664, 7 (2008)

    Article  ADS  Google Scholar 

  52. M.C. Bento, O. Bertolami, A.A. Sen, Phys. Rev. D 66, 04350 (2002)

    Article  Google Scholar 

  53. J. Lu, Y. Gui, L.X. Xu, Eur. Phys. J. C 63, 349 (2009)

    Article  ADS  Google Scholar 

  54. Z.H. Zhu, Astron. Astrophys. 423, 421 (2004)

    Article  ADS  Google Scholar 

  55. B.F. Gerke, G. Efstathiou, Mon. Not. R. Acad. Soc. 335, 33 (2002)

    Article  ADS  Google Scholar 

  56. G. Efstathiou et al., Mon. Not. R. Acad. Soc. 303, L47 (1999)

    Article  ADS  Google Scholar 

  57. F. Hoyle, J.V. Narlikar, Mon. Not. R. Acad. Soc. 108, 372 (1948)

    Article  ADS  Google Scholar 

  58. B. Wang, Y. Gong, E. Abdalla, Phys. Lett. B 624, 141 (2005)

    Article  ADS  Google Scholar 

  59. B. Wang, J. Zang, Ch.Y. Lin, E. Abdalla, S. Micheletti, Nucl. Phys. B 778, 69 (2007)

    Article  ADS  Google Scholar 

  60. A. Lewis, S. Bridle, Phys. Rev. D 66, 103511 (2002)

    Article  ADS  Google Scholar 

  61. J.L. Cui, Y.Y. Xu, J.F. Zhang, X. Zhang, Sci. Chin. Phys. Mech. Astron. 58, 110402 (2015)

    Article  Google Scholar 

  62. B.C. Pau, arXiv:1006.3428 (2010)

  63. Q.G. Huang, Y. Gong, JCAP 08, 006 (2004)

    Article  ADS  Google Scholar 

  64. H.C. Kao, W.L. Lee, F.L. Lin, Phys. Rev. D 71, 123518 (2005)

    Article  ADS  Google Scholar 

  65. J. Shen, B. Wang, E. Abdalla, R.K. Su, Phys. Lett. B 609, 200 (2005)

    Article  ADS  Google Scholar 

  66. E.E.O. Ishida et al., Astropart. Phys. 28, 547 (2008)

    Article  ADS  Google Scholar 

  67. J.V. Cunha, Phys. Rev. D 79, 047301 (2009)

    Article  ADS  Google Scholar 

  68. A. Loeb, Astrophys. J. 499, L111 (1998)

    Article  ADS  Google Scholar 

  69. J. Zhang, L. Zhang, X. Zhang, Phys. Lett. B 691, 11 (2010)

    Article  ADS  Google Scholar 

  70. J. Liske, A. Grazian, E. Vanzella, M. Dessauges et al., Mon. Not. R. Astron. Soc. 386, 1192 (2008)

    Article  ADS  Google Scholar 

  71. D.N. Spergel, R. Bean, O. Doré et al., Astrophys. J. Suppl. 170, 377 (2007)

    Article  ADS  Google Scholar 

  72. V. Fayaz et al., Eur. Phys. J. Plus 130, 28 (2015)

    Article  Google Scholar 

  73. Y.G. Gong, A. Wang, Phys. Rev. D 75, 043520 (2006)

    Article  ADS  Google Scholar 

  74. Y.G. Gong, A. Wang, Phys. Rev. D 73, 083506 (2006)

    Article  ADS  Google Scholar 

  75. R.A. Daly et al., J. Astrophys. 677, 1 (2008)

    Article  ADS  Google Scholar 

  76. Y. Gong, A. Wang, Phys. Lett. B 652, 63 (2007)

    Article  ADS  Google Scholar 

  77. E. Komatsu et al., Astrophys. J. Suppl. Ser. 180, 330 (2009)

    Article  ADS  Google Scholar 

  78. M. Li, X.D. Li, S. Wang, X. Zhang, JCAP 06, 036 (2009)

    Article  ADS  Google Scholar 

  79. R. Jimenez, L. Verde, T. Treu, D. Stern, Astrophys. J. 593, 622 (2003)

    Article  ADS  Google Scholar 

  80. W.J. Percival et al., Mon. Not. R. Acad. Soc. 381, 1053 (2007)

    Article  ADS  Google Scholar 

  81. A.G. Riess, Astrophys. J. 699, 539 (2009)

    Article  ADS  Google Scholar 

  82. Y.S. Song, W.J. Percival, JCAP 10, 004 (2009)

    Article  ADS  Google Scholar 

  83. J. Simon, L. Verde, R. Jimenez, Phys. Rev. D 71, 123001 (2005)

    Article  ADS  Google Scholar 

  84. M. Moresco, Mon. Not. R. Acad. Soc. 450, L16 (2015)

    Article  ADS  Google Scholar 

  85. R. Jimenez, Rom. J. Phys. 5, 863 (2012)

    Google Scholar 

  86. Y.L. Li, S.Y. Li, T.J. Zhang, T.P. Li, Astrophys. J. 789, L15 (2014)

    Article  ADS  Google Scholar 

  87. F. Pace, L. Moscardini, R. Crittenden, M. Bartelmann, V. Pettorino, Mon. Not. R. Acad. Soc. 437, 547 (2014)

    Article  ADS  Google Scholar 

  88. W.J. Percival, Astron. Astrophys. 443, 819 (2005)

    Article  ADS  Google Scholar 

  89. T. Naderi, M. Malekjani, F. Pace, Mon. Not. R. Acad. Soc. 447, 1873 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Hossienkhani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fayaz, V., Hossienkhani, H. & Jafari, A. Effect of anisotropy on the generalized Chaplygin gas scalar field and its interaction with other dark energy models. Eur. Phys. J. Plus 132, 193 (2017). https://doi.org/10.1140/epjp/i2017-11464-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11464-2

Navigation