Skip to main content
Log in

A novel passivation process of silicon nanowires by a low-cost PECVD technique for deposition of hydrogenated silicon nitride using SiH4 and N2 as precursor gases

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this work, a different SiNx passivation process of silicon nanowires has been opted for the deposition of a hydrogenated silicon nitride (SiNx:H) by a low-cost plasma enhanced chemical vapor deposition (PECVD) using silane ( SiH4 and nitrogen ( N2 as reactive gases. This study is focused on the effect of the gas flow ratio on chemical composition, morphological, optical and optoelectronic properties of silicon nanowires. The existence of Si-N and Si-H bonds was proven by the Fourier transmission infrared (FTIR) spectrum. Morphological structures were shown by scanning electron microscopy (SEM), and the roughness was investigated by atomic force microscopy (AFM). A low reflectivity less than 6% in the wavelength range 250-1200nm has been shown by UV-visible spectroscopy. Furthermore, the thickness and the refractive index of the passivation layer is determined by ellipsometry measurements. As a result, an improvement in minority carrier lifetime has been obtained by reducing surface recombination of silicon nanowires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K-Q. Peng, S-T. Lee, Adv. Mater. 23, 198 (2011)

    Article  Google Scholar 

  2. K. Kang, H.S. Lee, D.W. Han, G.S. Kim, D. Lee, G. Lee, Y.M. Kang, M.H. Jo, Appl. Phys. Lett. 96, 3 (2010)

    Google Scholar 

  3. I. Peng, C.M. Strohsahl, K.E. Leach, T.D. Krauss, B.L. Miller, ACS Nano 3, 2265 (2009)

    Article  Google Scholar 

  4. K.Q. Peng, X. Wang, S.T. Lee, Appl. Phys. Lett. 95, 243112 (2009)

    Article  ADS  Google Scholar 

  5. A.I. Hochbaum, D. Gargas, Y.J. Hwang, P.D. Yang, Nano Lett. 9, 3550 (2009)

    Article  ADS  Google Scholar 

  6. Y.Q. Qu, L. Liao, Y.J. Li, H. Zhang, Y. Huang, X.F. Duan, Nano Lett. 9, 4539 (2009)

    Article  ADS  Google Scholar 

  7. A.I. Hochbaum, R.K. Chen, R.D. Delgado, W.J. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P.D. Yang, Nature 451, 163 (2008)

    Article  ADS  Google Scholar 

  8. Y.Q. Qu, L. Liao, R. Cheng, Y. Wang, Y.C. Lin, Y. Huang, X.F. Duan, Nano Lett. 10, 1941 (2010)

    Article  ADS  Google Scholar 

  9. Sanjay K. Srivastava, Dinesh Kumar, P.K. Singh, M. Kar, Vikram Kumar, M. Husain, Nano Lett. 94, 1506 (2010)

    Google Scholar 

  10. J. Westwater, D.P. Gosain, S. Usui, Jpn. J. Appl. Phys. 36, 6204 (1997)

    Article  ADS  Google Scholar 

  11. Y. Cui, L.J. Lauhon, M.S. Gudiksen, J. Wang, C.M. Lieber, Appl. Phys. Lett. 78, 2214 (2001)

    Article  ADS  Google Scholar 

  12. L. Schubert, P. Werner, N.D. Zakharov, G. Gerth, F.M. Kolb, L. Long, U. Gosele, T.Y. Tan, Appl. Phys. Lett. 84, 4968 (2004)

    Article  ADS  Google Scholar 

  13. J.R. Maiolo, B.M. Kayes, M.A. Filler, M.C. Putnam, M.D. Kelzenberg, H.A. Atwater, N.S. Lewis, J. Am. Chem. Soc. 129, 12346 (2007)

    Article  Google Scholar 

  14. A.M. Morales, C.M. Lieber, Science 279, 208 (1998)

    Article  ADS  Google Scholar 

  15. Y.F. Zhang, Y.H. Tang, N. Wang, D.P. Yu, C.S. Lee, I. Bello, S.T. Lee, Appl. Phys. Lett. 72, 1835 (1998)

    Article  ADS  Google Scholar 

  16. Ming-Liang Zhang, Kui-Qing Peng, Xia Fan, Jian-Sheng Jie, Rui-Qin Zhang, Shuit-Tong Lee, Ning-Bew Wong, J. Phys. Chem. C 112, 4444 (2008)

    Article  Google Scholar 

  17. M. Karyaoui, A. Bardaoui, M. Ben Rabha, J.C. Harmand, M. Amlouk, Eur. Phys. J. Appl. Phys. 58, 20103 (2012)

    Article  ADS  Google Scholar 

  18. Wei-Cheng Wang, Che-Wei Lin, Hsin-Jui Chen, Che-Wei Chang, Jhih-Jie Huang, Ming-Jui Yang, Budi Tjahjono, Jian-Jia Huang, Wen-Ching Hsu, Miin-Jang Chen, ACS Appl. Mater. Interfaces 5, 9752 (2013)

    Article  Google Scholar 

  19. E.S.M. Ashour, M.Y. Sulaiman, N. Amin, Z. Ibrahim, J. Phys.: Conf. Ser. 431, 012021 (2013)

    Google Scholar 

  20. Wim Soppe, Henk Rieffe, Arthur Weeber, Prog. Photovolt.: Res. Appl. 13, 551 (2005)

    Article  Google Scholar 

  21. S.C. Mao, S.H. Tao, Y.L. Xu, X.W. Sun, M.B. Yu, G.Q. Lo, D.L. Kwong, Opt. Express 16, 20809 (2008)

    Article  ADS  Google Scholar 

  22. I. Horcas, R. Fernandez, J.M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, A.M. Baro, Rev. Sci. Instrum. 78, 013705 (2007)

    Article  ADS  Google Scholar 

  23. R.A. Sinton, A. Cuevas, Appl. Phys. Lett. 69, 2510 (1996)

    Article  ADS  Google Scholar 

  24. Hai Zhou, Guojia Fang, Longyan Yuan, Chong Wang, Xiaoxia Yang, Huihui Huang, Conghua Zhou, Xingzhong Zhao, Appl. Phys. Lett. 94, 013503 (2009)

    Article  ADS  Google Scholar 

  25. F. Duerinckx, J. Szlufcik, Sol. Energy Mater. Sol. Cells 72, 231 (2002)

    Article  Google Scholar 

  26. A. Cuevas, D. Macdonal, Sol. Energy 76, 255 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lamia Bouaziz .

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouaziz , L., Dridi, D., Karyaoui, M. et al. A novel passivation process of silicon nanowires by a low-cost PECVD technique for deposition of hydrogenated silicon nitride using SiH4 and N2 as precursor gases. Eur. Phys. J. Plus 132, 119 (2017). https://doi.org/10.1140/epjp/i2017-11383-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11383-2

Navigation