Skip to main content
Log in

Stefan blowing effects on MHD bioconvection flow of a nanofluid in the presence of gyrotactic microorganisms with active and passive nanoparticles flux

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The present paper investigates the effect of Stefan blowing on the hydro-magnetic bioconvection of a water-based nanofluid flow containing gyrotactic microorganisms through a permeable surface. Also we studied both actively and passively the controlled flux of nanoparticles and the effect of a surface slip at the wall. We adopt a similarity approach to reduce the leading partial differential equations into ordinary differential equations along with two separate boundary conditions (active and passive) and solve the resulting equations numerically by employing the RK-4 method through the shooting technique to perform the flow analysis. Discussions on the effect of emerging flow parameter on the flow characteristic are made properly through graphs and charts. We observed that the effects of the traditional Lewis number and suction/blowing parameter on temperature distribution and microorganism concentration are converse to each other. A fair result comparison of the present paper with formerly obtained results is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Pedley, N.A. Hill, J.O. Kessler, J. Fluid Mech. 195, 223 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  2. N.A. Hill, T. Pedley, J.O. Kessler, J. Fluid Mech. 208, 509 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  3. T. Pedley, J.O. Kessler, J. Fluid Mech. 212, 155 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  4. S. Ghorai, N.A. Hill, J. Fluid Mech. 400, 1 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  5. S. Ghorai, N.A. Hill, Bull. Math. Biol. 62, 429 (2000)

    Article  Google Scholar 

  6. S. Ghorai, N.A. Hill, J. Theor. Biol. 219, 137 (2002)

    Article  Google Scholar 

  7. S. Ghorai, N.A. Hill, Phys. Fluids 19, 054107 (2007)

    Article  ADS  Google Scholar 

  8. A.V. Kuznetsov, Int. Commun. Heat Mass Transfer 32, 991 (2005)

    Article  Google Scholar 

  9. C.R. Williams, M.A. Bees, J. Exp. Biol. 214, 2398 (2011)

    Article  Google Scholar 

  10. P.K. Srimani, M.C. Roopa, Int. J. Curr. Res. 3, 114 (2011)

    Google Scholar 

  11. P.K. Srimani, D. Radha, Int. J. Appl. Math. Stat. Sci. 2, 27 (2013)

    Google Scholar 

  12. S.U.S. Choi, Developments and Application of Non-Newtonian Flows (ASME Press, New York, USA, 1995)

  13. T. Tsai, D. Liou, L. Kuo, P. Chen, Sensors Actuat. A Phys. 153, 267 (2009)

    Article  Google Scholar 

  14. H. Li, S. Liu, Z. Dai, J. Bao, Sensors 9, 8547 (2009)

    Article  Google Scholar 

  15. A. Munir, J. Wang, H.S. Zhou, IET Nanobiotechnol. 3, 55 (2009)

    Article  Google Scholar 

  16. A.V. Kuznetsov, A.A. Avramenko, Int. Commun. Heat Mass Transfer 31, 1 (2004)

    Article  Google Scholar 

  17. A.V. Kuznetsov, P. Geng, Int. J. Numer. Methods Heat Fluid Flow 15, 328 (2005)

    Article  Google Scholar 

  18. A.V. Kuznetsov, Int. Commun Heat Mass Transfer 37, 1421 (2010)

    Article  Google Scholar 

  19. A.V. Kuznetsov, Nanoscale Res. Lett. 6, 100 (2011)

    Article  ADS  Google Scholar 

  20. W.A. Khan, O.D. Makinde, Z.H. Khan, Int. J. Heat Mass Transfer 74, 285 (2014)

    Article  Google Scholar 

  21. S.T. Mohyud-Din, Syed Zulfiqar Ali Zaidi, Neural Comput. Appl. (2016) DOI:10.1007/s00521-016-2366-9

  22. K. Das, P.R. Duari, P.K. Kundu, J. Mech. Sci. Technol. 29, 1 (2015)

    Google Scholar 

  23. Md.T. Sk, K. Das, P.K. Kundu, J. Mol. Liq. 220, 518 (2016)

    Article  Google Scholar 

  24. N. Acharya, K. Das, P.K. Kundu, J. Mol. Liq. 222, 28 (2016)

    Article  Google Scholar 

  25. A. Sarkar, K. Das, P.K. Kundu, J. Mol. Liq. 223, 725 (2016)

    Article  Google Scholar 

  26. T. chakraborty, K. Das, P.K. Kundu, Alex. Eng. J. (2016) DOI:10.1016/j.aej.2016.11.011

  27. D.A. Nield, A.V. Kuznetsov, Int. J. Heat Mass Transfer 52, 5792 (2009)

    Article  Google Scholar 

  28. D.A. Nield, A.V. Kuznetsov, Int. J. Heat Mass Transfer 65, 682 (2013)

    Article  Google Scholar 

  29. D.A. Nield, A.V. Kuznetsov, Int. J. Heat Mass Transfer 77, 915 (2014)

    Article  Google Scholar 

  30. D.A. Nield, A.V. Kuznetsov, Int. J. Heat Mass Transfer 68, 211 (2014)

    Article  Google Scholar 

  31. T. Hayat, Z. Hussain, A. Alsaedi, T. Muhammad, Neural Comput. Appl. (2016) DOI:10.1007/s00521-016-2685-x

  32. N.A. Halim, S. Sivasankaran, N.F.M. Noor, Neural Comput. Appl. (2016) DOI:10.1007/s00521-016-2380-y

  33. N.A. Halim, R.U. Haq, N.F.M. Noor, Meccanica (2016) DOI:10.1007/s11012-016-0517-9

  34. M. Atlas, R.U. Haq, T. Mekkaoui, J. Mol. Liq. 223, 289 (2016)

    Article  Google Scholar 

  35. T. Fang, W. Jing, Commun Nonlinear Sci. Numer. Simulat. 19, 3086 (2014)

    Article  ADS  Google Scholar 

  36. Md. J. Uddin, M.N. Kabir, O.A. Beg, Int. J. Heat Mass Transfer 95, 116 (2016)

    Article  Google Scholar 

  37. Md. J. Uddin, Y. Alginahi, Md. J. Uddin, M.N. Kabir, Comput. Math. Appl. 72, 2562 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shib Sankar Giri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giri, S.S., Das, K. & Kundu, P.K. Stefan blowing effects on MHD bioconvection flow of a nanofluid in the presence of gyrotactic microorganisms with active and passive nanoparticles flux. Eur. Phys. J. Plus 132, 101 (2017). https://doi.org/10.1140/epjp/i2017-11338-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11338-7

Navigation