Skip to main content
Log in

Fundamental constraints on two-time physics

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

We show that generalizations of classical and quantum dynamics with two times lead to a fundamentally constrained evolution. At the level of classical physics, Newton’s second law is extended and exactly integrated in a (1 + 2) -dimensional space, leading to effective single-time evolution for any initial condition. The cases 2 + 2 and 3 + 2 are also analyzed. In the domain of quantum mechanics, we follow strictly the hypothesis of probability conservation by extending the Heisenberg picture to unitary evolution with two times. As a result, the observability of two temporal axes is constrained by a generalized uncertainty relation involving level spacings, total duration of the effect and Planck’s constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Scherk, J.H. Schwarz, Nucl. Phys. B 153, 61 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  2. V.A. Rubakov, M.E. Shaposhnikov, Phys. Lett. B 125, 139 (1983)

    Article  ADS  Google Scholar 

  3. S. Weinberg, Phys. Lett. B 125, 265 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  4. E. Alvarez, M. Belen Gavela, Phys. Rev. Lett. 51, 931 (1983)

    Article  ADS  Google Scholar 

  5. J.D. Barrow, Phys. Rev. D 35, 1805 (1987)

    Article  ADS  Google Scholar 

  6. Y. Hosotani, Phys. Lett. B 126, 309 (1983)

    Article  ADS  Google Scholar 

  7. E. Cremmer, J. Scherk, Nucl. Phys. B 118, 61 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  8. T. Flacke, D. Hooper, J. March-Russell, Phys. Rev. D 73, 095002 (2006) Phys. Rev. D 74

    Article  ADS  Google Scholar 

  9. K. Kong, K.T. Matchev, JHEP 01, 038 (2006)

    Article  ADS  Google Scholar 

  10. F.J. Petriello, JHEP 05, 003 (2002)

    Article  ADS  Google Scholar 

  11. T. Appelquist, H.C. Cheng, B.A. Dobrescu, Phys. Rev. D 64, 035002 (2001)

    Article  ADS  Google Scholar 

  12. U. Haisch, A. Weiler, Phys. Rev. D 76, 034014 (2007)

    Article  ADS  Google Scholar 

  13. F. Goertz, U. Haisch, M. Neubert, Phys. Lett. B 713, 23 (2012) arXiv:1112.5099 [hep-ph]

    Article  ADS  Google Scholar 

  14. N. Arkani Hamed, S. Dimopoulos, G.R. Dvali, J. March Russell, Phys. Rev. D 65, 024032 (2002) arXiv:hep-ph/9811448

    Article  ADS  MathSciNet  Google Scholar 

  15. K.R. Dienes, E. Dudas, T. Gherghetta, Nucl. Phys. B 537, 47 (1999) arXiv:hep-ph/9806292

    Article  ADS  MathSciNet  Google Scholar 

  16. P.P. Giardino, P. Lodone, J. Phys. Conf. Ser. 323, 012017 (2011)

    Article  ADS  Google Scholar 

  17. R. Allahverdi, C. Bird, S. Groot Nibbelink, M. Pospelov, Phys. Rev. D 69, 045004 (2004) hep-ph/0305010

    Article  ADS  MathSciNet  Google Scholar 

  18. D. Bailin, A. Love, Rep. Prog. Phys. 50, 1087 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  19. P.A.M. Dirac, Lectures on Quantum Mechanics, Belfer Graduate School Monograph Series, No. 2 (Yeshiva University, New York, 1964)

  20. A.O. Barut, S. Komy, Fortschr. Phys. 33, 309 (1985)

    Article  MathSciNet  Google Scholar 

  21. M. Moshinsky, A. Nikitin, Rev. Mex. Fis. 50, 66 (2005)

    MathSciNet  Google Scholar 

  22. M. Moshinsky, E. Sadurní, Composite particles in relativistic quantum mechanics and their application to three quark systems, in 25th International Colloquium on Group Theoretical Methods in Physics, Inst. Phys. Conf. Ser. 185 (IOP, 2005) p. 403

  23. M. Lienert, J. Math. Phys. 56, 042301 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  24. M. Moshinsky, Y.F. Smirnov, The Harmonic Oscillator in Modern Physics (Hardwood Academic Publishers, Amsterdam, 1996)

  25. E. Sadurní, J. Phys. A: Math. Theor. 42, 015209 (2009)

    Article  ADS  Google Scholar 

  26. E. Sadurní, J.A. Franco-Villafae, U. Kuhl, F. Mortessagne, T.H. Seligman, New J. Phys. 15, 123014 (2013)

    Article  ADS  Google Scholar 

  27. A. Komar, Phys. Rev. D 18, 1881 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  28. H. Jensen, H. Koppe, Ann. Phys. 63, 586 (1971)

    Article  ADS  Google Scholar 

  29. R.C.T. da Costa, Phys. Rev. A 23, 1982 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  30. E. Sadurní, W.P. Schleich, AIP Conf. Proc. 1323, 283 (2010)

    Article  ADS  Google Scholar 

  31. S. Bittner, B. Dietz, M. Miski-Oglu, A. Richter, C. Ripp, E. Sadurní, W.P. Schleich, Phys. Rev. E 87, 042912 (2013)

    Article  ADS  Google Scholar 

  32. R. Bonezzi, E. Latini, A. Waldron, Phys. Rev. D 82, 064037 (2010)

    Article  ADS  Google Scholar 

  33. J. Scherk, J.H. Schwarz, Nucl. Phys. B 153, 61 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  34. I. Bars, Class. Quantum Grav. 18, 3113 (2001) arXiv:hep-th/0008164

    Article  ADS  MathSciNet  Google Scholar 

  35. I. Bars, J. Terning, Extra Dimensions in Space and Time (Springer-Verlag, New York, 2010)

  36. I. Bars, C. Kounnas, Phys. Lett. B 402, 25 (1997) arXiv:hep-th/9703060

    Article  ADS  MathSciNet  Google Scholar 

  37. I. Bars, Phys. Rev. D 77, 125027 (2008) arXiv:0804.1585 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  38. I. Bars, C. Deliduman, D. Minic, Phys. Lett. B 457, 275 (1999) arXiv:hep-th/9904063

    Article  ADS  MathSciNet  Google Scholar 

  39. V.M. Villanueva, J.A. Nieto, L. Ruiz, J. Silvas, J. Phys. A 38, 7138 (2005) arXiv:hep-th/0503093

    Article  MathSciNet  Google Scholar 

  40. I. Bars, C. Kounnas, Phys. Rev. D 56, 3664 (1997) arXiv:hep-th/9705205

    Article  ADS  MathSciNet  Google Scholar 

  41. L.H. Ryder, Quantum Field Theory (Cambridge University Press, Cambridge, 1996)

  42. P.A.M. Dirac, Proc. R. Soc. Lond. A 136, 453 (1932)

    Article  ADS  Google Scholar 

  43. F. Bloch, Phys. Z. Sowjetunion 5, 301 (1934)

    Google Scholar 

  44. S. Tomonaga, On a Relativistically Invariant Formulation of the Quantum Theory of Wave Fields in Selected Papers on Quantum Electrodynamics, edited by J. Schwinger (Dover, 1958) pp. 156--168

  45. H.W. Crater, P. Van Alstine, Ann. Phys. 148, 57 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  46. H. Sazdjian, Phys. Rev. D 33, 3401 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  47. A. Mostafazadeh, F. Zamani, Ann. Phys. 321, 2183 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  48. S. Petrat, R. Tumulka, J. Math. Phys. 55, 032302 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  49. W.H. Zurek, Rev. Mod. Phys. 75, 715 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  50. M. Schlosshauer, Rev. Mod. Phys. 76, 1267 (2005)

    Article  ADS  Google Scholar 

  51. A. Isar, A. Sandalescu, H. Scutaru, W. Scheid, Int. J. Mod. Phys. E 03, 635 (1994)

    Article  ADS  Google Scholar 

  52. M. Lienert, J. Phys. A: Math. Theor. 48, 325302 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Sadurní.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piceno, E., Rosado, A. & Sadurní, E. Fundamental constraints on two-time physics. Eur. Phys. J. Plus 131, 352 (2016). https://doi.org/10.1140/epjp/i2016-16352-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16352-7

Navigation