Skip to main content
Log in

The flow of micropolar fluids through a microparallel corrugated channel

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The flow of micropolar fluids through a microparallel channel with corrugated walls is performed in this paper. The corrugations of the two walls are described as periodic sinusoidal waves with small amplitude and phase difference \( \theta\). The flow generated by the constant pressure gradient is assumed to be steady and unidirectional. Approximate analytical solutions of velocity, vorticity of micro-rotation and volume flow rate are obtained by perturbation techniques. The effects of the corrugation on the flow are graphically analyzed by using numerical computation. The dependences of velocity, vorticity of micro-rotation and leading-order perturbations to the mean velocity of micropolar fluids on the Reynolds number Re, the phase difference \( \theta\) of the two corrugated walls and couple stress parameter s0 are explained graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.C. Eringen, Int. J. Eng. Sci. 2, 205 (1964)

    Article  MathSciNet  Google Scholar 

  2. H.A. Stone, A.D. Stroock, A. Ajdari, Annu. Rev. Fluid Mech. 36, 381 (2004)

    Article  ADS  Google Scholar 

  3. D.J. Laster, J.G. Santiago, J. Micromech. Microeng. 14, R35 (2004)

    Article  Google Scholar 

  4. G. Karniadakis, A. Beskok, N. Aluru, Micorflows and Nanoflows: Fundamentals and Simulation (Springer, New York, 2005)

  5. A.C. Eringen, J. Math. Mech. 16, 1 (1966)

    MathSciNet  Google Scholar 

  6. T. Ariman, M.A. Turk, N.D. Sylvester, Int. J. Eng. Sci. 11, 905 (1973)

    Article  Google Scholar 

  7. T. Ariman, M.A. Turk, N.D. Sylvester, Int. J. Eng. Sci. 12, 273 (1974)

    Article  Google Scholar 

  8. V.K. Stokes, Theories of Fluids with Microstructures (Springer, New York, 1984)

  9. G. Lukaszewicz, Micropolar Fluids: Theory and Application (Birkhäuser, Basel, 1999)

  10. A.C. Eringen, Microcontinnum Field Theories: II. Fluent Media (Springer, New York, 2001)

  11. A.G. Willson, Proc. Camb. Philos. Soc. 67, 469 (1970)

    Article  ADS  Google Scholar 

  12. J.R.J. Peddieson, R.P. McNitt, Recent Adv. Eng. Sci. 5, 405 (1970)

    Google Scholar 

  13. G. Nath, Rheol. Acta 14, 850 (1975)

    Article  Google Scholar 

  14. J. Delhommelle, D.J. Evans, Mol. Phys. 100, 2857 (2002)

    Article  ADS  Google Scholar 

  15. A.J. Chamkha, T. Grosan, I. Pop, Int. Commun. Heat Transf. 29, 1021 (2002)

    Article  Google Scholar 

  16. A. Ishak, R. Nazar, I. Pop, Phys. Lett. A 372, 559 (2008)

    Article  ADS  Google Scholar 

  17. J.P. Kumar, J.C. Umavathi, A.J. Chamkha et al., Appl. Math. Model. 34, 1175 (2010)

    Article  MathSciNet  Google Scholar 

  18. K. Bhattacharyya, S. Mukhopadhyay, G.C. Layek et al., Int. J. Heat Mass Transf. 55, 2945 (2012)

    Article  Google Scholar 

  19. J.V.R. Murthy, J. Srinivas, Int. J. Heat Mass Transf. 65, 254 (2013)

    Article  Google Scholar 

  20. M. Devakar, T.K.V. Iyengar, Eur. Phys. J. Plus 128, 41 (2013)

    Article  Google Scholar 

  21. A. Borrelli, G. Giantesio, M.C. Patria, Int. J. Heat Mass Transf. 80, 614 (2015)

    Article  MathSciNet  Google Scholar 

  22. C.Y. Wang, J. Appl. Mech. 46, 462 (1979)

    Article  ADS  Google Scholar 

  23. Z.K.H. Chu, Mech. Res. Commun. 26, 457 (1999)

    Article  Google Scholar 

  24. B. Tashtoush, M. Al-Odat, J. Magn. & Magn. Mater. 268, 357 (2004)

    Article  ADS  Google Scholar 

  25. N.M. Bujurke, R.B. Kudenatti, Fluid Dyn. Res. 39, 334 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  26. N.M. Bujurke, N.B. Naduvinamani, D.P. Basti, Tribol. Int. 44, 916 (2011)

    Article  Google Scholar 

  27. N.B. Naduvinamani, B.N. Hanumagowda, S.T. Fathima, Tribol. Int. 56, 19 (2012)

    Article  Google Scholar 

  28. M. Buren, Y.J. Jian, L. Chang, J. Phys. D: Appl. Phys. 47, 425501 (2014)

    Article  ADS  Google Scholar 

  29. D.Q. Si, Y.J. Jian, J. Phys. D: Appl. Phys. 48, 085501 (2015)

    Article  ADS  Google Scholar 

  30. M. Buren, Y.J. Jian, Electrophoresis 36, 1539 (2015)

    Article  Google Scholar 

  31. H.C. Weng, C.K. Chen, M.H. Chang, J. Fluid Mech. 631, 343 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  32. K.H. Hoffmann, D. Marx, N.D. Botkin, J. Fluid Mech. 590, 319 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjun Jian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Jian, Y. & Li, F. The flow of micropolar fluids through a microparallel corrugated channel. Eur. Phys. J. Plus 131, 338 (2016). https://doi.org/10.1140/epjp/i2016-16338-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16338-5

Navigation