Skip to main content
Log in

Modeling cancer growth and its treatment by means of statistical mechanics entropy

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper, we have modeled cancer growth and its treatment based on nonextensive entropies. To this end, five nonextensive entropies are employed to model the cancer growth. The used entropies are Tsallis, Rényi, Landsberg-Vedral, Abe and Escort. First, we have proposed the growth of cancer tumor as a function of time for all the entropies with different nonextensive parameter q. When the time passes, the entropies show a bounded growth for cancer tumor size. The speed of tumor size growth is different for all the entropies. The Tsallis and Escort ones have highest and lowest speed, respectively. For \(q>1\), the Escort entropy cannot predict a bounded growth for cancer tumor size. Then, we have investigated the cancer tumor treatment by adding a cell-kill function to the evolution equation. For \(q<1\), a constant cell-kill function is unable to reduce the cancer tumor size to zero for all the entropies. But, for \(q>1\), a cell-kill term is a suitable case. According to the results, it is found that the nonextensive parameter q, type of entropy, and cell-kill function are important factors for modeling the cancer growth and its treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.K. Pathria, Statistical Mechanics (Butterworth, Washington, 1996)

  2. B. Muller, J. Reinhardt, M.T. Strickland, Neural Networks: An Introduction (Springer, Berlin, 1995)

  3. C. Beck, Contemp. Phys. 50, 495 (2009)

    Article  ADS  Google Scholar 

  4. T.L.H. Watkin, A. Rau, M. Biehl, Rev. Mod. Phys. 65, 499 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  5. J.G. Taylor, Neural Networks and the Brain, in Physics and Mathematics of the Nervous System, edited by M. Conrad, W. Guttinger, M. Dal Cm (Springer-Verlag, Berlin, 1974)

  6. P. Peretto, An Introduction to the Modeling of Neural Networks (Cambridge University Press, Cambridge, 1992)

  7. H.S. Seung, H. Sompolinsky, N. Tishby, Phys. Rev. A 45, 6056 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  8. R.V. Chereji, A.V. Morozov, J. Stat. Phys. 144, 379 (2011)

    Article  ADS  Google Scholar 

  9. J.J. Hopfeld, A.V.M. Herz, Proc. Natl. Acad. Sci. U.S.A. 92, 6655 (1995)

    Article  ADS  Google Scholar 

  10. R. Khordad, H.R. Rastegar Sedehi, Eur. Phys. J. Plus 130, 246 (2015)

    Article  Google Scholar 

  11. R.A. Gatenby, P.K. Maini, Nature 421, 321 (2003)

    Article  ADS  Google Scholar 

  12. F. Michor, Y. Iwasa, M.A. Nowak, Nat. Rev. Cancer 4, 197 (2004)

    Article  Google Scholar 

  13. T.S. Deisboeck, M.E. Berens, A.R. Kansal, S. Torquato, A.O. Stemmer-Rachamimov, E.A. Chiocca, Cell Prolif. 34, 115 (2001)

    Article  Google Scholar 

  14. H. Kitano, Mol. Syst. Biol. 3, 137 (2007)

    Article  Google Scholar 

  15. D. Rockmore, Santa Fe Inst. Bull. 20, 18 (2005)

    Google Scholar 

  16. M. Tarabichi, A. Antoniou, M. Saiselet, J.M. Pita, G. Andry, J.E. Dumont, V. Detours, C. Maenhaut, Cancer Metastasis Rev. 32, 403 (2013)

    Article  Google Scholar 

  17. A.L. Ferreira, D. Lipowska, A. Lipowski, Phys. Rev. E 85, 010901(R) (2012)

    Article  ADS  Google Scholar 

  18. C. Bianca, J. Riposo, Eur. Phys. J. Plus 130, 159 (2015)

    Article  Google Scholar 

  19. C. Bianca, Math. Models Methods Appl. Sci. 21, 389 (2011)

    Article  MathSciNet  Google Scholar 

  20. C. Bianca, L. Fermo, Comp. Math. Appl. 61, 277 (2011)

    Article  MathSciNet  Google Scholar 

  21. T. Alarcon, H.M. Byrne, P.K. Maini, J. Theor. Biol. 225, 257 (2003)

    Article  MathSciNet  Google Scholar 

  22. L.L. Chen, C. Beck, Physica A 387, 3162 (2008)

    Article  ADS  Google Scholar 

  23. M. AlQuraishi, G. Koytiger, A. Jenney, G. MacBeath, P.K. Sorger, Nat Genet. 46, 1363 (2014)

    Article  Google Scholar 

  24. V. Cristini, H.B. Frieboes, R. Gatenby, S. Caserta, M. Ferrari, J. Sinek, Clin. Cancer Res. 11, 6772 (2005)

    Article  Google Scholar 

  25. J.A. Eble, J. Haier, Curr. Cancer Drug Targets 6, 89 (2006)

    Article  Google Scholar 

  26. H.B. Frieboes, X. Zheng, C.H. Sun, B. Tromberg, R. Gatenby, V. Cristini, Cancer Res. 66, 1597 (2006)

    Article  Google Scholar 

  27. M.E. de Oliveira, L.M.G. Neto, Math. Biosci. Eng. 13, 333 (2016)

    MathSciNet  Google Scholar 

  28. R.P. Araujo, D.L.S. McElwain, Bull. Math. Biol. 66, 1039 (2004)

    Article  MathSciNet  Google Scholar 

  29. J. Adam, General aspects of modeling tumor growth and the immune response, in A Survey of Models on Tumor Immune Systems Dynamics, edited by J. Adam, N. Bellomo (Birkhauser, Boston, MA, 1996)

  30. W. Schulz, Molecular biology of Human cancers (Springer, Science, Germany, 2005)

  31. H.M. Byrne, T. Alarcon, M.R. Owen, S.D. Webb, P.K. Maini, Philos. Trans. R. Soc. A 364, 1563 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  32. V. Quaranta, A.M. Weaver, P.T. Cummings, A.R.A. Anderson, Clin. Chim. Acta 357, 173 (2005)

    Article  Google Scholar 

  33. S. Sanga, J.P. Sinek, H.B. Frieboes, J.P. Fruehauf, V. Cristini, Expert. Rev. Anticancer Ther. 6, 1361 (2006)

    Article  Google Scholar 

  34. C.P. Calderon, T.A. Kwenbe, Math. Biosci. 103, 97 (1991)

    Article  MathSciNet  Google Scholar 

  35. J.A. González, I. Rondón, Physica A 369, 645 (2006)

    Article  ADS  Google Scholar 

  36. H.M. Byrne, M.A.J. Chaplain, Math. Biosci. 135, 187 (1996)

    Article  Google Scholar 

  37. H.M. Byrne, M.A.J. Chaplain, Math. Comput. Model. 24, 1 (1996)

    Article  Google Scholar 

  38. G.G. Steel, L.F. Lamerton, Brit. J. Cancer 20, 74 (1966)

    Article  ADS  Google Scholar 

  39. G.G. Steel, Basic Clinical Radiobiology (Edward Arnold Publisher, London, 2002)

  40. P.W. Sullivan, S.E. Salmon, J. Clin. Invest 51, 1697 (1972)

    Article  Google Scholar 

  41. L. Norton, Cancer Res. 48, 7067 (1988)

    Google Scholar 

  42. T. Roose, S.J. Chapman, P.K. Maini, Siam Rev. 49, 179 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  43. S. Benzekry, C. Lamont, A. Beheshti, A. Tracz, J.M.L. Ebos, L. Hlatky, P. Hahnfeldt, PLoS Comput. Biol. 10, 100 (2014)

    Article  Google Scholar 

  44. P. Gerlee, Cancer Res. 73, 2407 (2013)

    Article  Google Scholar 

  45. D. Drasdo, S. Höhme, Phys. Biol. 2, 133 (2005)

    Article  ADS  Google Scholar 

  46. X. Gao, J.T. McDonald, L. Hlatky, H. Enderling, Cancer Res. 73, 1481 (2013)

    Article  Google Scholar 

  47. C.H. Wang, J.K. Rockhill, M. Mrugala, D.L. Peacock, A. Lai et al., Cancer Res. 69, 9133 (2009)

    Article  Google Scholar 

  48. R.A. Gatenby, E.T. Gawlinski, Cancer Res. 56, 5745 (1996)

    Google Scholar 

  49. D. Ambrosi, F. Mollica, Mechanical models in tumour growth, in Cancer Modelling and Simulation, edited by L. Preziosi (CRC Press, 2003)

  50. D. Bresch, T. Colin, E. Grenier, B. Ribba, O. Saut, SIAM J. Sci. Comput. 32, 2321 (2010)

    Article  MathSciNet  Google Scholar 

  51. D. Hart, E. Schochat, Z. Agur, Brit. J. Cancer 78, 382 (1998)

    Article  Google Scholar 

  52. L. Norton, R. Simon, H.D. Brereton, A.E. Bogden, Nature 264, 542 (1976)

    Article  ADS  Google Scholar 

  53. G.G. Steel, L.F. Lamerton, Br. J. Cancer 20, 74 (1996)

    Article  Google Scholar 

  54. A.K. Laird, Br. J. Cancer 19, 278 (1965)

    Article  Google Scholar 

  55. J.A. Spratt, D. von Fournier, J.S. Spratt, E.E. Weber, Cancer 71, 2013 (1993)

    Article  Google Scholar 

  56. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  57. A. Rényi, in Proceedings of the fourth Berkeley Symposium on Mathematics, Statistics and Probability (1961) p. 547

  58. J.F. Bercher, Phys. Lett. A 375, 2969 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  59. C.H. Takimoto, E. Calvo E., Principles of Oncologic Pharmacotherapy, in Cancer Management: A Multidisciplinary Approach, edited by R. Pazdur, L.D. Wagman, K.A. Camphausen, W.J. Hoskins (2008)

  60. T.E. Wheldon, Mathematical Models in Cancer Research (Adam Hilger, Bristol, 1988)

  61. L. Norton, Cancer Res. 49, 6444 (1989)

    Google Scholar 

  62. L. Norton, R. Simon, Cancer Treat. Rep. 61, 1307 (1977)

    Google Scholar 

  63. L. Norton, R. Simon, Cancer Treat. Rep. 70, 163 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Khordad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khordad, R., Rastegar Sedehi, H.R. Modeling cancer growth and its treatment by means of statistical mechanics entropy. Eur. Phys. J. Plus 131, 291 (2016). https://doi.org/10.1140/epjp/i2016-16291-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16291-3

Navigation