Skip to main content
Log in

Correction methods for finite-acceptance effects in two-particle correlation analyses

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract.

Two-particle angular correlations have been widely used as a tool to explore particle production mechanisms in heavy-ion collisions. The mixed-event technique is generally used as a standard method to correct for finite-acceptance effects. We demonstrate that event mixing only provides an approximate acceptance correction, and propose new methods for finite-acceptance corrections. Starting from discussions about 2-dimensional correction procedures, new methods are derived for specific assumptions on the properties of the signal, such as uniform signal distribution or \( \delta\)-function-like trigger particle distribution, and suitable for two-particle correlation analyses from particles at mid-rapidity and jet-hadron or high p T -triggered hadron-hadron correlations. Per-trigger associated particle yields from the mixed-event method and the new methods are compared through Monte Carlo simulations containing well-defined correlation signals. Significant differences are observed at large pseudorapidity differences in general and especially for asymmetric particle distribution like that produced in proton-nucleus collisions. The applicability and validity of the new methods are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. STAR Collaboration (C. Adler et al.), Phys. Rev. Lett. 90, 082302 (2003) arXiv:nucl-ex/0210033 [nucl-ex]

    Article  Google Scholar 

  2. PHENIX Collaboration (K. Adcox et al.), Phys. Rev. Lett. 89, 212301 (2002) arXiv:nucl-ex/0204005 [nucl-ex]

    Article  Google Scholar 

  3. CMS Collaboration (V. Khachatryan et al.), JHEP 09, 091 (2010) arXiv:1009.4122 [hep-ex]

    Google Scholar 

  4. ALICE Collaboration (B. Abelev et al.), Phys. Lett. B 719, 29 (2013) arXiv:1212.2001 [nucl-ex]

    Article  ADS  Google Scholar 

  5. ATLAS Collaboration (G. Aad et al.), Phys. Rev. Lett. 110, 182302 (2013) arXiv:1212.5198 [hep-ex]

    Article  ADS  Google Scholar 

  6. CMS Collaboration (S. Chatrchyan et al.), Phys. Lett. B 718, 795 (2013) arXiv:1210.5482 [nucl-ex]

    Article  ADS  Google Scholar 

  7. L. Xu, C.H. Chen, F. Wang, Phys. Rev. C 88, 064907 (2013) Doi:10.1103/PhysRevC.88.064907

    Article  ADS  Google Scholar 

  8. S. Ravan, P. Pujahari, S. Prasad, C.A. Pruneau, Phys. Rev. C 89, 024906 (2014) arXiv:1311.3915 [nucl-ex]

    Article  ADS  Google Scholar 

  9. C.A. Pruneau, Phys. Rev. C 74, 064910 (2006) arXiv:nucl-ex/0608002 [nucl-ex]

    Article  ADS  Google Scholar 

  10. V. Vechernin, On description of the correlation between multiplicities in windows separated in azimuth and rapidity, arXiv:1305.0857 [hep-ph] (2013)

  11. PHOBOS Collaboration (B. Alver et al.), Phys. Rev. C 81, 034915 (2010) arXiv:1002.0534 [nucl-ex]

    Article  Google Scholar 

  12. STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 95, 152301 (2005) arXiv:nucl-ex/0501016 [nucl-ex]

    Article  Google Scholar 

  13. PHENIX Collaboration (S.S. Adler et al.), Phys. Rev. Lett. 97, 052301 (2006) arXiv:nucl-ex/0507004 [nucl-ex]

    Article  Google Scholar 

  14. PHENIX Collaboration (A. Adare et al.), Phys. Rev. C 78, 014901 (2008) arXiv:0801.4545 [nucl-ex]

    Article  Google Scholar 

  15. CMS Collaboration (S. Chatrchyan et al.), Phys. Lett. B 724, 213 (2013) arXiv:1305.0609 [nucl-ex]

    Article  ADS  Google Scholar 

  16. L. Adamczyk, Long-range pseudorapidity dihadron correlations in $d + $ Au collisions at $\sqrt{s_{NN}} = 200$ GeV, arXiv:1502.07652 [nucl-ex] (2015)

  17. PHENIX Collaboration (S. Adler et al.), Phys. Rev. Lett. 96, 222301 (2006) arXiv:nucl-ex/0603017 [nucl-ex]

    Article  Google Scholar 

  18. STAR Collaboration (M. Aggarwal et al.), Phys. Rev. C 82, 024912 (2010) arXiv:1004.2377 [nucl-ex]

    Article  ADS  Google Scholar 

  19. N. Ajitanand, J. Alexander, P. Chung, W. Holzmann, M. Issah et al., Phys. Rev. C 72, 011902 (2005) arXiv:nucl-ex/0501025 [nucl-ex]

    Article  ADS  Google Scholar 

  20. T.A. Trainor, Phys. Rev. C 81, 014905 (2010) arXiv:0904.1733 [hep-ph]

    Article  ADS  Google Scholar 

  21. T. Sjostrand, L. Lonnblad, S. Mrenna, PYTHIA 6.2: Physics and manual, arXiv:hep-ph/0108264 [hep-ph] (2001)

  22. J.-Y. Ollitrault, Phys. Rev. D 46, 229 (1992)

    Article  ADS  Google Scholar 

  23. A.M. Poskanzer, S.A. Voloshin, Phys. Rev. C 58, 1671 (1998) arXiv:nucl-ex/9805001 [nucl-ex]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saehanseul Oh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, S., Morsch, A., Loizides, C. et al. Correction methods for finite-acceptance effects in two-particle correlation analyses. Eur. Phys. J. Plus 131, 278 (2016). https://doi.org/10.1140/epjp/i2016-16278-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16278-0

Navigation