Skip to main content
Log in

Control of wake destructive behavior for different bluff bodies in channel flow by magnetohydrodynamics

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Control of wake structure may lead to a reduction in the unsteady forces and vibrations in the marine structures. In this paper, the finite-volume method (FVM) is used to simulate the flow around two-dimensional obstacles with different cross-sections. Maxwell equations are used to provide the coupling between the flow field and the magnetic field. The range of Stuart (Su and Reynolds (Re numbers are 0-10 and 1-200, respectively. The effects of the magnetic field on the control of the wake structure and vortex shedding behind the obstacles are investigated in details. Moreover, an analogy has been performed between different configurations. Finally, several empirical equations for steadiness and disappearance Stuart numbers are presented for each obstacle. It was found that the diamond and circular configurations have the largest and smallest effects on steadiness and disappearance Stuart numbers among all the configurations. Additionally, it was observed that the drag coefficient slowly reduces by exerting the magnetic field at low Stuart numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Zhao, L. Cheng, B. Teng, D. Liang, Appl. Ocean Res. 27, 39 (2005)

    Article  Google Scholar 

  2. P.F. Zhang, J.J. Wang, L.X. Huang, Appl. Ocean Res. 28, 183 (2006)

    Article  Google Scholar 

  3. S. Mittal, A. Raghuvanshi, Int. J. Numer. Methods Fluids 35, 421 (2001)

    Article  ADS  Google Scholar 

  4. Z. Li, I.M. Navon, M.Y. Hussaini, F.-X. Le Dimet, Comp. Fluids 32, 149 (2003)

    Article  Google Scholar 

  5. S. Muddada, B.S.V. Patnaik, Eur. J. Mech. B/Fluids 29, 93 (2010)

    Article  ADS  Google Scholar 

  6. Y.J. Chen, C.P. Shao, J. Fluids Struct. 43, 15 (2013)

    Article  ADS  Google Scholar 

  7. D.K. Maiti, R. Bhatt, Ocean Eng. 82, 91 (2014)

    Article  Google Scholar 

  8. A. Sohankar, M. Khodadadi, E. Rangraz, Comp. Fluids 109, 155 (2015)

    Article  MathSciNet  Google Scholar 

  9. M.S. Valipour, S. Rashidi, M. Bovand, R. Masoodi, Eur. J. Mech. B/Fluids 46, 74 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  10. S. Rashidi, R. Masoodi, M. Bovand, M.S. Valipour, Int. J. Numer. Methods Heat Fluid Flow 24, 1504 (2014)

    Article  MathSciNet  Google Scholar 

  11. G. Nati, M. Kotsonis, S. Ghaemi, F. Scarano, Exp. Therm. Fluid Sci. 46, 199 (2013)

    Article  Google Scholar 

  12. Y.G. Liu, L.H. Feng, J. Fluids Struct. 54, 743 (2015)

    Article  ADS  Google Scholar 

  13. M.S. Valipour, S. Rashidi, R. Masoodi, ASME J. Heat Transf. 136, 062601 (2014)

    Article  Google Scholar 

  14. S. Rashidi, M. Dehghan, R. Ellahi, M. Riaz, M.T. Jamal-Abad, J. Magn. & Magn. Mater. 378, 128 (2015)

    Article  ADS  Google Scholar 

  15. S. Rashidi, M. Bovand, J.A. Esfahani, H.F. Öztop, R. Masoodi, ASME J. Fluids Eng. 137, 061102 (2015)

    Article  Google Scholar 

  16. B.H. Dennis, G.S. Dulikravich, Int. J. Heat Fluid Flow 23, 15 (2002)

    Article  Google Scholar 

  17. S. Vantieghem, B. Knaepen, Int. J. Heat Fluid Flow 32, 1120 (2011)

    Article  Google Scholar 

  18. S. Bouabdallah, R. Bessaih, Int. J. Heat Fluid Flow 37, 154 (2012)

    Article  Google Scholar 

  19. O. Almeida, S.S. Mansur, A. Silveira-Neto, Therm. Eng. 8, 55 (2008)

    Google Scholar 

  20. M. Breuer, J. Bernsdorf, T. Zeiser, F. Durst, Int. J. Heat Fluid Flow 21, 186 (2000)

    Article  Google Scholar 

  21. B. Muck, C. Gunther, U. Muller, L.L. Buhler, J. Fluid Mech. 418, 265 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  22. M. Bovand, S. Rashidi, M. Dehghan, J.A. Esfahani, M.S. Valipour, J. Magn. & Magn. Mater. 385, 198 (2015)

    Article  ADS  Google Scholar 

  23. T. Hayat, A. Naseem, M. Farooq, A. Alsaedi, Eur. Phys. J. Plus 128, 158 (2013)

    Article  Google Scholar 

  24. M. Ramzan, M. Farooq, A. Alsaedi, T. Hayat, Eur. Phys. J. Plus 128, 49 (2013)

    Article  Google Scholar 

  25. T. Fang, Eur. Phys. J. Plus 129, 92 (2014)

    Article  ADS  Google Scholar 

  26. S. Nadeem, M. Hussain, M. Naz, Meccanica 45, 869 (2010)

    Article  MathSciNet  Google Scholar 

  27. S.K. Parida, S. Panda, M. Acharya, Meccanica 46, 1093 (2011)

    Article  MathSciNet  Google Scholar 

  28. S.K. Ghosh, O. Anwar Bég, M. Narahari, Meccanica 44, 741 (2009)

    Article  MathSciNet  Google Scholar 

  29. S. Srikanth, A.K. Dhiman, S. Bijjam, Int. J. Therm. Sci. 49, 2191 (2010)

    Article  Google Scholar 

  30. J.A. Esfahani, P.B. Shahabi, Energy Convers. Manag. 51, 2087 (2010)

    Article  Google Scholar 

  31. H.S. Yoon, H.H. Chun, M.Y. Ha, H.G. Lee, Int. J. Heat Mass Transf. 47, 4075 (2004)

    Article  Google Scholar 

  32. S. Rashidi, M. Bovand, I. Pop, M.S. Valipour, Transp. Porous Media 102, 207 (2014)

    Article  MathSciNet  Google Scholar 

  33. N. Tonui, D. Sumner, J. Fluids Struct. 27, 62 (2011)

    Article  ADS  Google Scholar 

  34. S. Rashidi, A. Tamayol, M.S. Valipour, N. Shokri, Int. J. Heat Mass Transf. 63, 91 (2013)

    Article  Google Scholar 

  35. M.V. Morkovin, Flow around a circular cylinder-A kaleidoscope of challenging fluid phenomena, in Symposium on Fully Separated Flows, edited by A.G. Hansen (American Society of Mechanical Engineers, 1964) pp. 102--118

  36. N. Boisaubert, M. Coutanceau, P. Ehrmann, J. Fluid Mech. 327, 73 (1996)

    Article  ADS  Google Scholar 

  37. O. Zeitoun, Mohamed Ali, A. Nuhait, Int. J. Therm. Sci. 50, 1685 (2011)

    Article  Google Scholar 

  38. D. Chatterjee, S. Ray, Int. J. Heat Mass Transf. 79, 769 (2014)

    Article  Google Scholar 

  39. M. White, Fluid Mechanics, sixth edition (McGraw Hill Book Company, New York, 2009)

  40. A. Prhashanna, A.K. Sahu, R.P. Chhabra, Int. J. Therm. Sci. 50, 2027 (2011)

    Article  Google Scholar 

  41. S.V. Patankar, Numerical Heat Transfer and Fluid Flow (Hemisphere, New York, 1980)

  42. S. Rashidi, A. Nouri-Borujerdi, M.S. Valipour, R. Ellahi, I. Pop, Transp. Porous Media 107, 171 (2015)

    Article  Google Scholar 

  43. S. Rashidi, J.A. Esfahani, J. Magn. & Magn. Mater. 391, 5 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Esfahani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bovand, M., Rashidi, S., Esfahani, J.A. et al. Control of wake destructive behavior for different bluff bodies in channel flow by magnetohydrodynamics. Eur. Phys. J. Plus 131, 194 (2016). https://doi.org/10.1140/epjp/i2016-16194-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16194-3

Navigation