Skip to main content
Log in

External magnetic field effect on the growth rate of a plasma-loaded free-electron laser

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In order to extend the production of intense coherent radiation to angstrom wavelengths, a laser wave is employed as a laser wiggler which propagates through a magnetized plasma channel. The plasma-loaded laser wigglers increase the ability of laser guidance and electron bunching process compared to the counterpropagating laser wigglers in vacuum. The presence of the plasma medium can make it possible to propagate the laser wiggler and the electron beam parallel to each other so that the focusing of the pulse will be saved. In addition, employing an external guide magnetic field can confine both the ambient plasma and the transverse motions of the electron beam, therefore, improving the free-electron lasers’ efficiency, properly. Electron trajectories have been obtained by solving the steady state equations of motion for a single particle and the fourth-order Runge-Kutta method has been used to simulate the electron orbits. To study the growth rate of a laser-pumped free-electron laser in the presence of a plasma medium, perturbation analysis has been performed to combine the momentum transfer, continuity, and wave equations, respectively. Numerical calculations indicate that by increasing the guide magnetic field frequency, the growth rate for group I orbits increases, while for group II and III orbits decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Helml, A.R. Maier, W. Schweinberger, I. Grguraš, P. Radcliffe, G. Doumy, C. Roedig, J. Gagnon, M. Messerschmidt, S. Schorb, Nat. Photon. 8, 950 (2014)

    Article  ADS  Google Scholar 

  2. V. Loriot, A. Marciniak, L. Quintard, V. Despre, B. Schindler, I. Compagnon, B. Concina, G. Celep, C. Borda, F. Catoire, J. Phys.: Conf. Ser. 635, 012006 (2015)

    ADS  Google Scholar 

  3. Hong Ma, Jiancai Leng, Phys. Lett. A 377, 1974 (2013)

    Article  Google Scholar 

  4. S.V. Kukhlevsky, G. Nyitray, Phys. Lett. A 291, 459 (2001)

    Article  ADS  Google Scholar 

  5. K. Zhukovsky, Opt. Commun. 353, 35 (2015)

    Article  ADS  Google Scholar 

  6. T. Ishikawa, H. Aoyagi, T. Asaka, Y. Asano, N. Azumi, T. Bizen, H. Ego, K. Fukami, T. Fukui, Y. Furukawa, Nat. Photon. 6, 540 (2012)

    Article  ADS  Google Scholar 

  7. B. Borisov, J.C. McCorkindale, S. Poopalasingam, J.W. Longworth, C.K. Rhodes, Contrib. Plasma Phys. 53, 179 (2013)

    Article  ADS  Google Scholar 

  8. S. Boutet S, G.J. Williams, New J. Phys. 12, 035024 (2010)

    Article  ADS  Google Scholar 

  9. P.R. Ribic, G. Margaritondo, J. Phys. D: Appl. Phys. 45, 213001 (2012)

    Article  ADS  Google Scholar 

  10. P. Emma, R. Akre, J. Arthur, R. Bionta, C. Bostedt, J. Bozek, A. Brachmann, P. Bucksbaum, R. Coffee, F.-J. Decker, Nat. Photon. 4, 641 (2010)

    Article  ADS  Google Scholar 

  11. G.I. Peters, L. Allen, Phys. Lett. A 39, 259 (1972)

    Article  ADS  Google Scholar 

  12. E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov, Opt. Commun. 281, 1179 (2008)

    Article  ADS  Google Scholar 

  13. G.R. Robb, R. Bonifacio, Phys. Plasmas 19, 073101 (2012)

    Article  ADS  Google Scholar 

  14. D. Andreou, Phys. Lett. A 57, 250 (1976)

    Article  ADS  Google Scholar 

  15. D. Ratner, R. Abela, J. Amann, C. Behrens, D. Bohler, G. Bouchard, C. Bostedt, M. Boyes, K. Chow, D. Cocco, Nat. Photon. 6, 540 (2012)

    Article  Google Scholar 

  16. N. Cutić, F. Lindau, S. Thorin, S. Werin, J. Bahrdt, W. Eberhardt, K. Holldack, C. Erny, A. L’Huillier, E. Mansten, Phys. Rev. ST Accel. Beams 14, 030706 (2011)

    Article  ADS  Google Scholar 

  17. Y. Ding, Z. Huang, Ruth, Phys. Rev. ST Accel. Beams 13, 060703 (2010)

    Article  ADS  Google Scholar 

  18. M.-C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M.M. Murnane, H.C. Kapteyn, Phys. Rev. Lett. 105, 173901 (2010)

    Article  ADS  Google Scholar 

  19. A. Goldring, A.L. Friedland, Phys. Rev. A 32, 2879 (1985)

    Article  ADS  Google Scholar 

  20. H.P. Freund, R.A. Kehs, V.L. Granatstein, IEEE J. Quantum Electron. QE-21, 1080 (1985)

    Article  ADS  Google Scholar 

  21. H.P. Freund, T.M. Antonsen, Principles of Free-Electron Lasers (Chapman and Hall, London, 1996)

  22. H. Mehdian, S. Jafari, A. Hasanbeigi, Plasma Phys. Control. Fusion 52, 055005 (2010)

    Article  ADS  Google Scholar 

  23. M. Verschl, C. Müller, Opt. Commun. 281, 4352 (2008)

    Article  ADS  Google Scholar 

  24. S. Babaei, B. Maraghechi, Phys. Plasmas 15, 013102 (2008)

    Article  ADS  Google Scholar 

  25. C. Joshi, T. Katsouleas, J.M. Dawson, Y.T. Yan, J.M. Slater, IEEE J. Quantum Electron 23, 1571 (1987)

    Article  ADS  Google Scholar 

  26. A. Sharma, V.K. Tripathi, Phys. Fluids B 5, 171 (1993)

    Article  ADS  Google Scholar 

  27. S. Jafari, Laser Phys. Lett. 12, 075002 (2015)

    Article  ADS  Google Scholar 

  28. S.S. Bulanov, T.Z. Esirkepov, A.G.R. Thomas, J.K. Koga, S.V. Bulanov, Phys. Rev. Lett. 105, 22040 (2010)

    Article  Google Scholar 

  29. I.A. Andriyash, E. d’Humie`res, V.T. Tikhonchuk, Ph. Balcou, Phys. Rev. Lett. 109, 244802 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jafari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaeildoost, N., Jafari, S. & Abbasi, E. External magnetic field effect on the growth rate of a plasma-loaded free-electron laser. Eur. Phys. J. Plus 131, 192 (2016). https://doi.org/10.1140/epjp/i2016-16192-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16192-5

Navigation