Skip to main content
Log in

Classical light sources with tunable temporal coherence and tailored photon number distributions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We demonstrate a method of obtaining, from coherent light, tunable classical light where the temporal characteristics and photon number distribution can be controlled electronically. The tunability of the temporal coherence is shown through second-order correlation (G 2(τ)) measurements, both in the continuous intensity measurement as well as in the photon counting regime. The generation of desired classical photon number distributions is illustrated by creating two light sources —one emitting a thermal state and the other a specific classical non-Gaussian state. Such tailored light sources with emission characteristics quite different from those of existing natural light sources are likely to be useful in quantum information processing, for example, in conjunction with photon addition, to generate tailored non-classical states of light with desired photon number distributions. As a particular application in this direction we also outline how a tailored classical non-Gaussian state generated by our technique may be mixed with a non-classical Gaussian state at a beamsplitter, to generate novel forms of non-Gaussian entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.J. Glauber, Phys. Rev. 130, 2529 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  2. E.C.G. Sudarshan, Phys. Rev. Lett. 10, 277 (1963).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. E. Fermi, Rev. Mod. Phys. 4, (1932).

  4. R.J. Glauber, Phys. Rev. 131, 2766 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  5. Brahim Lounis, Michel Orrit, Rep. Prog. Phys. 68, 1129 (2005).

    Article  ADS  Google Scholar 

  6. Pieter Kok, W.J. Munro, Kae Nemoto, T.C. Ralph, Jonathan P. Dowling, G.J. Milburn, Rev. Mod. Phys. 79, 135 (2007).

    Article  ADS  Google Scholar 

  7. Alejandra Valencia, Giuliano Scarcelli, Milena D’Angelo, Yanhua Shih, Phys. Rev. Lett. 94, 063601 (2005).

    Article  ADS  Google Scholar 

  8. Da Zhang, Yan-Hua Zhai, Ling-An Wu, Xi-Hao Chen, Opt. Lett. 30, 2354 (2005).

    Article  ADS  Google Scholar 

  9. F. Ferri, D. Mageeti, A. Gatti, M. Bache, E. Brambilla, L.A. Lugiato, Phys. Rev. Lett. 94, 183602 (2005).

    Article  ADS  Google Scholar 

  10. A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, L.A. Lugiato, J. Mod. Opt. 53, 739 (2006).

    Article  ADS  Google Scholar 

  11. A. Martin, O. Alibert, J.C. Flesch, J. Samuel, Supurna Sinha, S. Tanzilli, A. Kastberg, EPL 97, 10003 (2012).

    Article  ADS  Google Scholar 

  12. Nandan Satapathy, Deepak Pandey, Poonam Mehta, Supurna Sinha, Joseph Samuel, Hema Ramachandran, EPL 97, 50011 (2012).

    Article  Google Scholar 

  13. Alessia Allevi, Stefano Olivares, Maria Bondani, Opt. Expr. 20, 24850 (2012).

    Article  ADS  Google Scholar 

  14. A. Zavatta, V. Parigi, M. Bellini, Phys. Rev. A 75, 052106 (2007).

    Article  ADS  Google Scholar 

  15. V. Parigi, A. Zavatta, M. Bellini, J. Phys. B: At. Mol. Opt. Phys. 42, 114005 (2009).

    Article  ADS  Google Scholar 

  16. T. Kiesel, W. Vogel, M. Bellini, A. Zavatta, Phys. Rev. A 83, 032116 (2011).

    Article  ADS  Google Scholar 

  17. Xie Cheng, G. Klimeck, D.S. Elliott, Phys. Rev. A 41, 6376 (1990).

    Article  ADS  Google Scholar 

  18. Nandan Satapathy, Deepak Pandey, Sourish Banerjee, Hema Ramachandran, J. Opt. Soc. Am. A 30, 910 (2013).

    Article  ADS  Google Scholar 

  19. Deepak Pandey, Nandan Satapathy, M.S. Meena, Hema Ramachandran, Phys. Rev. A 84, 042322 (2011).

    Article  ADS  Google Scholar 

  20. W. Martienseen, E. Spiller, Am. J. Phys. 32, 919 (1964).

    Article  ADS  Google Scholar 

  21. F.T. Arecchi, Phys. Rev. Lett. 15, 912 (1965).

    Article  ADS  Google Scholar 

  22. G.S. Agarwal, K. Tara, Phys. Rev. A 43, 492 (1991).

    Article  ADS  Google Scholar 

  23. M.S. Kim, E. Park, P.L. Knight, H. Jeong, Phys. Rev. A 71, 043805 (2005).

    Article  ADS  Google Scholar 

  24. V. Parigi, A. Zavatta, M. Kim, M. Bellini, Science 317, 1890 (2007).

    Article  ADS  Google Scholar 

  25. A. Zavatta, V. Parigi, M.S. Kim, M. Bellini, New J. Phys. 10, 123006 (2008).

    Article  ADS  Google Scholar 

  26. A.I. Lvosky, S.A. Babichev, Phys. Rev. A 66, 0118011 (2002).

    Google Scholar 

  27. J. Wenger, R. Tualle-Brouri, P. Grangier, Phys. Rev. Lett. 92, 153601 (2004).

    Article  ADS  Google Scholar 

  28. A. Ourjoumtsev, R. Tualle-Brouri, J. Laurant, P. Grangier, Science 312, 83 (2006).

    Article  ADS  Google Scholar 

  29. K.K. Sabapathy, J. Solomon Ivan, R. Simon, Phys. Rev. Lett. 107, 130501 (2011).

    Article  ADS  Google Scholar 

  30. F. Dell’ Anno, S. De Siena, L. Albano, F. Illuminati, Phys. Rev. A 76, 022301 (2007).

    Article  ADS  Google Scholar 

  31. F. Dell’ Anno, S. De Siena, L. Albano, F. Illuminati, Eur. Phys. J. ST 160, 115 (2008).

    Article  Google Scholar 

  32. R. Hanbury Brown, R.Q. Twiss, Nature 177, 27 (1956).

    Article  Google Scholar 

  33. J. Solomon Ivan, M.S. Kumar, R. Simon, Quantum Inf. Process. 11, 853 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  34. Y. Aharonov, D. Falkoff, E. Lerner, H. Pendleton, Ann. Phys. (N.Y.) 39, 498 (1966).

    Article  ADS  Google Scholar 

  35. M.S. Kim, W. Son, V. Buzek, P.L. Knight, Phys. Rev. A 65, 032323 (2002).

    Article  ADS  Google Scholar 

  36. R. Simon, Phys. Rev. Lett. 84, 2726 (2000).

    Article  ADS  Google Scholar 

  37. J.S. Ivan, N. Mukunda, R. Simon, Quantum Inf. Process. 11, 873 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  38. L. Mandel, Opt. Lett. 4, 205 (1979).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hema Ramachandran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, D., Satapathy, N., Suryabrahmam, B. et al. Classical light sources with tunable temporal coherence and tailored photon number distributions. Eur. Phys. J. Plus 129, 115 (2014). https://doi.org/10.1140/epjp/i2014-14115-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2014-14115-2

Keywords

Navigation