Skip to main content
Log in

On CCC-predicted concentric low-variance circles in the CMB sky

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A new analysis of the CMB, using WMAP data, supports earlier indications of non-Gaussian features of concentric circles of low temperature variance. Conformal cyclic cosmology (CCC) predicts such features from supermassive black-hole encounters in an aeon preceding our Big Bang. The significance of individual low-variance circles in the true data has been disputed; yet a recent independent analysis has confirmed CCC's expectation that CMB circles have a non-Gaussian temperature distribution. Here we examine concentric sets of low-variance circular rings in the WMAP data, finding a highly non-isotropic distribution. A new “sky-twist” procedure, directly analysing WMAP data, without appeal to simulations, shows that the prevalence of these concentric sets depends on the rings being circular, rather than even slightly elliptical, numbers dropping off dramatically with increasing ellipticity. This is consistent with CCC's expectations; so also is the crucial fact that whereas some of the rings' radii are found to reach around 15° , none exceed 20° . The non-isotropic distribution of the concentric sets may be linked to previously known anomalous and non-Gaussian CMB features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Penrose, Cycles of Time: An Extraordinary New View of the Universe (Bodley Head, London, 2010) ISBN 978-0-224-08036-1

  2. V.G. Gurzadyan, R. Penrose, arXiv:1011.3706

  3. V.G. Gurzadyan, R. Penrose, arXiv:1104.5675

  4. B. Gold, N. Odegard, J.L. Weiland, R.S. Hill, A. Kogut, C.L. Bennett, G. Hinshaw, X. Chen, J. Dunkley, M. Halpern, N. Jarosik, E. Komatsu, D. Larson, M. Limon, S.S. Meyer, M.R. Nolta, L. Page, K.M. Smith, D.N. Spergel, G.S. Tucker, E. Wollack, E.L. Wright, Astrophys. J. Suppl. 192, 16 (2011)

    Article  ADS  Google Scholar 

  5. V.G. Gurzadyan, R. Penrose, arXiv:1012.1486

  6. R. Penrose, Before the big bang: an outrageous new perspective and its implications for particle physics, in EPAC 2006, Proceedings, Edinburgh, Scotland, edited by C.R. Prior (European Physical Society Accelerator Group, EPS-AG) pp. 2759, http://accelconf.web.cern.ch/AccelConf/e06/PAPERS/THESPA01.PDF

  7. K.A. Meissner, P. Nurowski, B. Ruszczycki, arXiv:1207.2498

  8. A. Moss, D. Scott, J.P. Zibin, J. Cosmol. Astropart. Phys. 04, 033 (2011)

    Article  ADS  Google Scholar 

  9. I.K. Wehus, H.K. Eriksen, Astrophys. J. 733, L29 (2011)

    Article  ADS  Google Scholar 

  10. A. Hajian, Astrophys. J. 740, 52 (2011)

    Article  ADS  Google Scholar 

  11. G.D. Starkman, C.J. Copi, D. Huterer, D. Schwarz, arXiv:1201.2459

  12. K.P. Tod, Gen. Relativ. Gravit. 44, 2933 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. W. Nelson, E. Wilson-Ewing, Phys. Rev. D 84, 043508 (2011)

    Article  ADS  Google Scholar 

  14. M. Gasperini, G. Veneziano, Phys. Rep. 373, 1 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  15. R. Penrose, The Road to Reality: A Complete Guide to the Laws of the Universe (Jonathan Cape, London, 2004) Vintage IBN: 9780-679-77631-4

  16. K.P. Tod, Class. Quantum Grav. 20, 521 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. S.W. Hawking, Phys. Rev. D 14, 2460 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  18. S.W. Hawking, Phys. Rev. D 72, 084013 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  19. I.H. Redmount, M.J. Rees, Comm. Astrophys. 14, 165 (1989)

    ADS  Google Scholar 

  20. D. Merritt, M. Milosavljevic, M. Favata, S.A. Hughes, D.E. Holz, Astrophys. J. 607, L9 (2004)

    Article  ADS  Google Scholar 

  21. R. Penrose, W. Rindler, Spinors and Space-Time, Vols. 1 and 2 (Cambridge University Press, Cambridge, U.K., 1984, 1986)

  22. H. Friedrich, Einstein's equation and conformal structure, in The Geometric Universe

  23. R. Penrose, Gen. Relativ. Gravit. 43, 3355 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. V.G. Gurzadyan, C.L. Bianco, A.L. Kashin, H. Kuloghlian, G. Yegorian, Phys. Lett. A 363, 121 (2007)

    Article  ADS  Google Scholar 

  25. V.G. Gurzadyan, A.A. Kocharyan, Astron. Astrophys. 493, L61 (2009)

    Article  ADS  MATH  Google Scholar 

  26. V.G. Gurzadyan, A.A. Kocharyan, EPL 86, 29002 (2009)

    Article  ADS  Google Scholar 

  27. S. Capozziello, M. Funaro, C. Stornaiolo, Astron. Astrophys. 420, 847 (2004)

    Article  ADS  MATH  Google Scholar 

  28. R.G. Clowes, K.A. Harris, S. Raghunathan, L.E. Campusano, I.K. Soechting, M.J. Graham, Mon. Not. R. Astron. Soc. 429, 2910 (2013)

    Article  ADS  Google Scholar 

  29. H. Yamabe, Osaka Math. J. 12, 2137 (1960)

    Google Scholar 

  30. E.T. Newman, R. Penrose, Proc. R. Soc. London A 305, 175 (1968)

    Article  ADS  Google Scholar 

  31. C.G. Callan, S. Coleman, R. Jackiw, Ann. Phys. 59, 42 (1970)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. C.R. LeBrun, Class. Quantum Grav. 2, 555 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. M.G. Eastwood, J.W. Rice, Commun. Math. Phys. 109, 207 (1987) 144

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurzadyan, V.G., Penrose, R. On CCC-predicted concentric low-variance circles in the CMB sky. Eur. Phys. J. Plus 128, 22 (2013). https://doi.org/10.1140/epjp/i2013-13022-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2013-13022-4

Keywords

Navigation