Skip to main content
Log in

Ryogo Kubo in his formative years as a physicist

  • Published:
The European Physical Journal H Aims and scope Submit manuscript

Abstract

The Japanese theoretical physicist Ryogo Kubo made remarkable contributions to statistical mechanics and condensed matter physics, amongst which his name is most widely associated with the linear response theory. Despite his importance in the history of modern physics, however, historians have paid him little attention. Using his unpublished manuscripts in a newly organized archive, this paper examines his studies and research up to the end of World War II. Influenced by his brother Masaji Kubo, a physical chemist, and the milieu at Tokyo Imperial University, he became interested in theoretical approaches to properties of matter and worked on dipolar gases and resistance in metals. After graduation, he studied three different phenomena—relaxation, melting, and rubber elasticity—by applying the method of eigenvalue problems. He was also involved in wartime research on noctovision and worked on photoemission in semiconductors. This paper also identifies two distinct focuses in his early research that persisted in his work after the war: solid-state physics and statistical mechanics in today’s terminology. Reconstructing Kubo’s formative years is instrumental for constructing a historiography of a key aspect of modern Japanese physics, namely, how the science of matter evolved before and during the war.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, Philip Warren. 1992. Biography of Philip W. Anderson. InNobel Lectures: Physics 1971–1980, edited by S. Lundqvist, 371–75. World Scientific, Singapore.

  2. Anderson, Philip Warren. 1995. Scientific and Personal Reminiscences of Ryogo Kubo.Butsuri 50: 896–98.

    Google Scholar 

  3. Aoki, Hiroshi. 2004. Kenkyū Tonarigumi Kumi’in Meibo [Member List of “the Research Neighborhood Groups”].The Japanese Journal for the History of Science and Technology, 7: 107–35.

    Google Scholar 

  4. Aoki, Hiroshi, and Atsushi Hiramoto. 2003. The Mobilization of Science and Technology and “the Research Neighborhood Groups”: Research Collaboration in Japan during World War II.Socio-Economic History 68: 501–22.

    Google Scholar 

  5. Appleyard, E. T. S. and A. C. B. Lovell. 1937. The Electrical Conductivity of Thin Metallic Films II—Caesium and Potassium on Pyrex Glass Surfaces.Proceedings of the Royal Society of London. Series A 158: 718–28.

    ADS  Google Scholar 

  6. Baba, Hiroaki, Masamichi Tsuboi, and Mitsuo Tazumi eds. 1990.Kaisō no Mizushima Kenkyūshitsu [Mizushima Laboratory in Reminiscences]. Kyōritsu Shuppan, Tokyo.

  7. Brown, L. M., and L. Hoddeson eds. 1983.The Birth of Particle Physics. Cambridge University Press, Cambridge.

  8. Brown, L. M., R. Kawabe, M. Konuma, and Z. Maki eds. 1991. Elementary Particle Theory in Japan, 1930–1960: Proceedings of the Japan-USA Collaborative Workshops.Progress of Theoretical Physics Supplement, 105.

  9. Brush, Stephen G. 1967. History of the Lenz-Ising Model.Reviews of Modern Physics 39: 883–93.

    ADS  Google Scholar 

  10. Brush, Stephen G. 1983.Statistical Physics and the Atomic Theory of Matter: From Boyle and Newton to Landau and Onsager. Princeton University Press, Princeton, NJ.

  11. Busseiron Kenkyū. 1944. Shōwa 18 nen ni okeru Busseiron Kondankai no Kaigō Kiroku [Records of Meetings by Busseiron Kondankai in 1943].Busseiron Kenkyū 4: 29–31.

    Google Scholar 

  12. Courant, Richard, and David Hilbert. 1924.Methoden der mathematischen Physik. Springer, Berlin.

  13. Debye, Peter. 1912. Einige resultate einer kinetischen Theorie der Isolatoren.Physikalische Zeitschrift 13: 97–100.

    MATH  Google Scholar 

  14. Debye, Peter. 1913. Zur Theorie der anomalen Dispersion im Gebiete der langwelligen elektrischen Strahlung.Verhandlungen der Deutschen Physikalischen Gesellschaft 15: 777–93.

    Google Scholar 

  15. Debye, Peter. 1929.Polare Molekeln. Hirzel, Leipzig.

  16. Dirac, Paul A. M. 1929. Quantum Mechanics of Many-Electron Systems.Proceedings of the Royal Society of London. Series A 123: 714–33.

    ADS  MATH  Google Scholar 

  17. Dresden, Max. 1995. Non-Equilibrium Statistical Mechanics or the Vagaries of Time Evolution. InTwentieth Century Physics, edited by L. Brown, A. Pais, and B. Pippard, 585–633. American Institute of Physics Press, New York, NY.

  18. Drude, Paul. 1900. Zur Elektronentheorie der Metalle.Annalen der Physik 306: 566–613.

    ADS  MATH  Google Scholar 

  19. Everitt, C. W. F., and W. M. Fairbank. 2008. London, Heinz. In vol. 8 ofComplete Dictionary of Scientific Biography: 479–83. Charles Scribner’s Sons, Detroit, MI.

  20. Fowler, Ralph H. 1931. The Analysis of Photoelectric Sensitivity Curves for Clean Metals at Various Temperatures.Physical Review 38: 45–56.

    ADS  MATH  Google Scholar 

  21. Fowler, Ralph H. 1936.Statistical Mechanics: The Theory of the Properties of Matter in Equilibrium. 2nd ed. Cambridge University Press, Cambridge.

  22. Fowler, Ralph H., and E. A. Guggenheim. 1939.Statistical Thermodynamics: A Version of Statistical Mechanics for Students of Physics and Chemistry. Cambridge University Press, Cambridge.

  23. Fröhlich, Herbert. 1936.Elektronentheorie der Metalle. Springer, Berlin.

  24. Furukawa, Yasu. 1998.Inventing Polymer Science: Staudinger, Carothers, and the Emergence of Macromolecular Chemistry. University of Pennsylvania Press, Philadelphia, PA.

  25. Furukawa, Yasu. 2002. Macromolecules: Their Structures and Functions. InThe Modern Physical and Mathematical Sciences. Vol. 5 of The Cambridge History of Science, edited by Mary Jo Nye: 429–46. The Cambridge History of Science. Cambridge University Press, Cambridge.

  26. Furukawa, Yasu. 2017.Kagakushatachi no Kyōto Gakuha: Kita Gen-itsu to Nihon no Kagaku [Chemists’ Kyoto School: Gen-itsu Kita and Japan’s Chemistry]. Kyoto University Press, Kyoto.

  27. Gavroglu, K., and A. Simões. 2011.Neither Physics nor Chemistry: A History of Quantum Chemistry. MIT Press, Cambridge, MA.

  28. Guth, Eugene, and James, Hubert M. 1941. Elastic and Thermoelastic Properties of Rubber like Materials.Industrial & Engineering Chemistry 33: 624–29.

    Google Scholar 

  29. Harasima, Akira. 1939. On the Theory of Fusion.Proceedings of the Physico-Mathematical Society of Japan. 3rd Series 21: 156–65.

    MATH  Google Scholar 

  30. Harasima, Akira. 1942. An Answer to the Criticism by H. Takahasi upon My Paper “On the Theory of Fusion.”Proceedings of the Physico-Mathematical Society of Japan. 3rd Series 24: 272.

    Google Scholar 

  31. Hashitsume, Natsuki. 1974. Tōkeirikigaku ni okeru Kubo Riron [The Kubo Method in Statistical Mechanics].Butsuri 29: 585–93.

    Google Scholar 

  32. Hashitsume, Natsuki. 1981. Tōkeirikigaku no Hatten to Kubo Riron—Senkeiōtōriron no Zengo [The Development of Statistical Mechanics and Kubo Theory—Before and After the Linear Response Theory]. InTōkeirikigaku no Shinpo [The Progress of Statistical Mechanics], edited by Kubo Ryogo Kyōju Kanreki Kinen Jigyō Jikkō Iinkai, 24–68. Shokabo, Tokyo.

  33. Hiramoto, Atsushi, ed. 2014.Nihon ni okeru Inobēsyon-Shisutemu to Shiteno Kyōdō Kenkyū Kaihatsu ha Ikanishite Umaretaka [How did Joint Research and Developments as Innovation Systems in Japan Emerged?]. Minerva Shobō, Kyoto.

  34. Hoch, Paul. 1992. The Development of the Band Theory of Solids, 1933–1960. InOut of the Crystal Maze: Chapters from The History of Solid State Physics, edited by L. Hoddeson, E. Braun, J. Teichmann, and S. Weart, 182–235. Oxford University Press, Oxford.

  35. Hoddeson, L., G. Baym, and M. Eckert. 1992a. The Development of the Quantum Mechanical Electron Theory of Metals, 1926–1933. InOut of the Crystal Maze: Chapters from The History of Solid State Physics, edited by L. Hoddeson, E. Braun, J. Teichmann, and S. Weart, 88–181. Oxford University Press, Oxford.

  36. Hoddeson, L., H. Schubert, S. J. Heims, and G. Baym. 1992b. Collective Phenomena. InOut of the Crystal Maze: Chapters from The History of Solid State Physics, edited by L. Hoddeson, E. Braun, J. Teichmann, and S. Weart, 489–616. Oxford University Press, Oxford.

  37. Husimi, Kôdi. 1940. Some Formal Properties of the Density Matrix.Proceedings of the Physico-Mathematical Society of Japan. 3rd Series 22: 264–314.

    MATH  Google Scholar 

  38. Husimi, Kôdi. 1942.Kakuritsuron oyobi Tōkeiron [Probability Theory and Statistical Theory]. Kawade Shobo, Tokyo.

  39. Husimi, Kôdi. 1978. Nihon ni okeru Butsurigaku no Seiritsu [The Establishment of Physics in Japan]. In vol. 1 ofNihon no Butsurigakushi [History of Physics in Japan], edited by the Physical Society of Japan, 503–20. Tokai University Press, Tokyo.

  40. Ichiyanagi, Masakazu. 1995. Conceptual Developments of Non-Equilibrium Statistical Mechanics in the Early Days of Japan.Physics Reports 262: 227–310.

    ADS  MathSciNet  Google Scholar 

  41. Imai, Tetsuji. 2001. Denshikan Kenkyū kara Handōtai Kenkyū eno Nagare [The Flow from Research on Electron Tube to Research on Semiconductor]. InNihon no Erekutoronikusu no Genryū [The Origin of Electronics in Japan], edited by Ikuo Takeda, Tetsuji Imai, and Tokuo Takahashi, 17–96. Kōgyō Chōsakai, Tokyo.

  42. Inui, Teturô, Masao Kotani, and Zyurô Sakaidi. 1931. On the Motion of the Earth’s Surface under the Influence of a Heavy Moring Body.Proceedings of the Physico-Mathematical Society of Japan. 3rd Series 13: 223–52.

    MATH  Google Scholar 

  43. Ishiguro, Eiichi. 1994. Prof. Kotani’s Work on the Theory of the Electronic Structure of Simple Molecules and Molecular Integrals (A Retrospective of Contributions to Physics by the Late Professor Masao Kotani).Butsuri 49: 455–59.

    Google Scholar 

  44. Ito, Kenji. 2002a. Making Sense of Ryôshiron (Quantum Theory): Introduction of Quantum Mechanics into Japan, 1920–1940. Ph.D. dissertation, Harvard University.

  45. Ito, Kenji. 2002b. Values of “Pure Science”: Nishina Yoshio’s Wartime Discourse between Nationalism and Physics, 1940–1945.Historical Studies in the Natural Sciences 33: 61–86.

    Google Scholar 

  46. Ito, Kenji. 2005. The Geist in the Institute: Production of Quantum Theorists in Prewar Japan. InPedagogy and the Practice of Science: Historical and Contemporary Perspectives, edited by David Kaiser, 151–84. MIT Press, Cambridge, MA.

  47. Ito, Kenji. 2016. The Question of Research in Prewar Japanese Physics. InScience, Technology, and Medicine in the Modern Japanese Empire, edited by D. G. Wittner and P. C. Brown, 193–210. Routledge, London.

  48. Ito, Kenji. 2017. Cultural Difference and Sameness: Historiographic Reflections on Histories of Modern Physics in Japan. InCultures without Culturalism: The Making of Scientific Knowledge, edited by K. Chemla and E. F. Keller, 49–68. Duke University Press, Durham, NC.

  49. James, Hubert M., and Eugene Guth. 1943. Theory of the Elastic Properties of Rubber.The Journal of Chemical Physics 11: 455–81.

    ADS  Google Scholar 

  50. James, Jeremiah. 2016. From Physical Chemistry to Chemical Physics, 1913–1941. InTransformation of Chemistry from the 1920s to the 1960s (Proceedings of the International Workshop on the History of Chemistry 2015 Tokyo), 183–91. The Japanese Society for the History of Chemistry, Tokyo.

  51. JPS Journals. 2020. Most Cited Articles in 2019 since Vol. 1 (1946). https://journals.jps.jp/page/jpsj/mcall (accessed June 15, 2020).

  52. JPSJ Editorial Board. 2017. 60 Year Anniversary of the Linear Response Theory by Kubo. https://journals.jps.jp/page/jpsj/news (accessed June 15, 2020).

  53. Kagaku. 1943. Kenkyūshitsu Gaikan: Zaidanhōjin Kobayasi Rigaku Kenkyūjo [Overview of Labratories: the Kobayasi Institute of Physical Research].Kagaku 13: 75–80.

    Google Scholar 

  54. Katsuki, Atsushi. 1994. Bussei Kenkyū Shi: Kikigaki Nōto [History of Research of Bussei: Interview Note] 3.Sūri Kagaku [Mathematical Sciences] 32: 58–68.

    Google Scholar 

  55. Katsuki, Atsushi. 1997. A Rough Sketch of History of Solid State Physics in Japan.Historia Scientiarum 7: 107–23.

    Google Scholar 

  56. Kawamura, Hajimu, Akio Kobayashi, Ryogo Kubo, and Kin-ichi Noga. 1950.Denshi Hōsha to Handōtai [Electron Emission and Semiconductor]. Sangyo Tosho, Tokyo.

  57. Keith, S. T., and Paul K. Hoch. 1986. Formation of a Research School: Theoretical Solid State Physics at Bristol 1930–54.The British Journal for the History of Science 19: 19–44.

    Google Scholar 

  58. Kikuchi, Yoshiyuki. 2000. Redefining Academic Chemistry: Jōji Sakurai and the Introduction of Physical Chemistry into Meiji Japan.Historia Scientiarum 9: 215–56.

    Google Scholar 

  59. Kikuchi, Yoshiyuki. 2008. Mizushima, San-ichirō. In vol. 23 ofComplete Dictionary of Scientific Biography: 167–71. Charles Scribner’s Sons, Detroit, MI.

  60. Kim, Dong-Won. 1995. The Emergence of Theoretical Physics in Japan: Japanese Physics Community Between the Two World Wars.Annals of Science 52: 383–402.

    MathSciNet  Google Scholar 

  61. Kim, Dong-Won. 2007.Yoshio Nishina: Father of Modern Physics in Japan. Taylor & Francis, New York, NY.

  62. Kinoshita, Toichiro. 1991. Personal Recollections, 1944–1952.Progress of Theoretical Physics Supplement 105: 116–19.

    ADS  Google Scholar 

  63. Kono, Hiroto, and Kazuo Kitahara. 2019. The “Ryogo Kubo Archive.”TITech Studies in Science, Technology, and Culture 22: 74–89.

    Google Scholar 

  64. Kotani, Masao. 1984. Scientific Reminiscence—My Pilgrimage through Quantum Molecular Sciences.International Journal of Quantum Chemistry 26: 11–20.

    Google Scholar 

  65. Kramers, H. A., and G. H. Wannier. 1941a. Statistics of the Two-Dimensional Ferromagnet. Part I.Physical Review 60: 252–62.

    ADS  MathSciNet  MATH  Google Scholar 

  66. Kramers, H. A., and G. H. Wannier. 1941b. Statistics of the Two-Dimensional Ferromagnet. Part II.Physical Review 60: 263–76.

    ADS  MathSciNet  MATH  Google Scholar 

  67. Kubo, Masaji. 1935. A Theory on the Dielectric Constant of the Gas of High Pressure.Nippon Kagaku Kaishi 56: 767–71.

    Google Scholar 

  68. Kubo, Ryogo. 1942. Kanwa Genshō ni tsuite [On the Relaxation Phenomena].Nippon Sugaku-Buturigakkwaishi 16: 243–50.

    Google Scholar 

  69. Kubo, Ryogo. 1943a. Kesshō no Anteisei to Yūkai [Stability of Crystals and Melting].Nippon Sugaku-Buturigakkwaishi 17: 63–65.

    Google Scholar 

  70. Kubo, Ryogo. 1943b. Sajōtai no Tōkeirikigaku [Statistical Mechanics of Chain Substances] (I) —Gomu Dansei ni kansuru Hitotsu no Mokeiteki Kōsatsu [A Study on Rubber Elasticity with Model].Nippon Sugaku-Buturigakkwaishi 17: 273–79.

    Google Scholar 

  71. Kubo, Ryogo. 1943c. Tōkeirikigaku ni okeru Hitotsu no Kaisekiteki Hōhō [An Analytic Method in Statistical Mechanics].Busseiron Kenkyū 1: 1–13.

    Google Scholar 

  72. Kubo, Ryogo. 1947a.Gomu Dansei [Rubber Elasticity]. Kawade Shobo, Tokyo.

  73. Kubo, Ryogo. 1947b. Statistical Theory of Linear Polymers. I. Intramolecular Statistics.Journal of the Physical Society of Japan 2: 47–50.

    ADS  MathSciNet  Google Scholar 

  74. Kubo, Ryogo. 1947c. Statistical Theory of Linear Polymers. II. Elasticity of Vulcanized Rubber.Journal of the Physical Society of Japan 2: 51–56.

    ADS  MathSciNet  Google Scholar 

  75. Kubo, Ryogo. 1947d. Statistical Theory of Linear Polymers III. Double Refraction.Journal of the Physical Society of Japan 2: 84–89.

    ADS  MathSciNet  Google Scholar 

  76. Kubo, Ryogo. 1947e. Statistica1 Theory of Rubber-like Substances.Journal of Colloid Science 2: 527–535.

    Google Scholar 

  77. Kubo, Ryogo. 1948a. Statistical Theory of Linear Polymers. IV. Effects of Hinderance for Internal Rotation.Journal of the Physical Society of Japan 3: 119–26.

    ADS  MathSciNet  Google Scholar 

  78. Kubo, Ryogo. 1948b. Interaction between Electrons and Ions in Semiconductors. I.Journal of the Physical Society of Japan 3: 254–59.

    ADS  Google Scholar 

  79. Kubo, Ryogo. 1948c. Large Elastic Deformation of Rubber.Journal of the Physical Society of Japan 3: 312–17.

    ADS  MathSciNet  Google Scholar 

  80. Kubo, Ryogo. 1949a. Statistical Theory of Linear Polymers V. Paraffine-like Chain.Journal of the Physical Society of Japan 4: 319–22.

    ADS  MathSciNet  Google Scholar 

  81. Kubo, Ryogo. 1949b. Interaction between Electrons and Ions in Semiconductors. II.Journal of the Physical Society of Japan 4: 322–25.

    ADS  Google Scholar 

  82. Kubo, Ryogo. 1949c. Interaction between Electrons and Ions in Semiconductors. III.Journal of the Physical Society of Japan 4: 326–29.

    ADS  Google Scholar 

  83. Kubo, Ryogo. 1949d. Tōkeirikigaku ni okeru Koyūchi Mondai [Eigenvalue Problems in Statistical Mechanics]. InButsurigaku no Shimpo [Progress of Physics] Dai San Shū [Vol. 3], edited by Yoshio Nishina, 87–134. Kyōritsu Shuppan, Tokyo.

  84. Kubo, Ryogo. 1952. Thermal Ionization of Trapped Electrons.Physical Review 86: 929–937.

    ADS  MATH  Google Scholar 

  85. Kubo, Ryogo. 1957. Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems.Journal of the Physical Society of Japan 12: 570–86.

    ADS  MathSciNet  Google Scholar 

  86. Kubo, Ryogo. 1975. Watashi to Butsurigaku [Physics and Me].Tōsho Kōkōtsūshin Butsuri, 119: 1–4.

    Google Scholar 

  87. Kubo, Ryogo. 1977a. Kotaidenshiron to Tōkeirikigaku [Theory of Electrons of Solids and Statitical Mechanics].Butsuri 32: 793–96.

    Google Scholar 

  88. Kubo, Ryogo. 1977b. Onsager Kyōju wo Itamu [In the Memory of Professor Onsager].Butsuri 32: 533–34.

    Google Scholar 

  89. Kubo, Ryogo. 1978. Nihon ni okeru Tōkeirikigaku no Seiritsu [The Establishment of Statistical Mechanics in Japan]. In vol. 1 ofNihon no Butsurigakushi [History of Physics in Japan], edited by the Physical Society of Japan, 521–32. Tokai University Press, Tokyo.

  90. Kubo, Ryogo. 1981. Tōkeibutsuri to Busseibutsuri [Statistical Physics and Bussei Physics]. InTōkeirikigaku no Shinpo [The Progress of Statistical Mechanics], edited by Kubo Ryogo Kyōju Kanreki Kinen Jigyō Jikkō Iinkai, 1–23. Shokabo, Tokyo.

  91. Kubo, Ryogo. 1996.Gomu Dansei: Shohan Hukkokuban [Rubber Elasticity: Reprint of the First Edition]. Shokabo, Tokyo.

  92. Kubo, Ryogo, and Kazuhisa Tomita. 1953. Broadening in Nuclear Magnetic Resonance Absorption.Proceedings of the International Conference of Theoretical Physics Kyoto and Tokyo, September 1953: 779–790.

  93. Kubo, Ryogo, and Kazuhisa Tomita. 1954. A General Theory of Magnetic Resonance Absorption.Journal of the Physical Society of Japan 9: 888–919.

    ADS  Google Scholar 

  94. Kubo, Ryogo, and Yutaka Toyozawa. 1955. Application of the Method of Generating Function to Radiative and Non-Radiative Transitions of a Trapped Electron in a Crystal.Progress of Theoretical Physics 13: 160–82.

    ADS  MATH  Google Scholar 

  95. Kubo, Shun’ichi. 1971. Kubo Tenzui. InMeiji Bungaku Zenshū [Meiji Era Literature Series], 381–84. Chikumashobo, Tokyo.

  96. Kuhn, Werner. 1934. Über die Gestalt fadenförmiger Moleküle in Lösungen.Kolloid-Zeitschrift 68: 2–15.

    Google Scholar 

  97. Kuhn, Werner. 1936. Beziehungen zwischen Molekülgröße, statistischer Molekülgestalt und elastischen Eigenschaften hochpolymerer Stoffe.Colloid &Polymer Science 76: 258–71.

    Google Scholar 

  98. Kuhn, Werner. 1939. Molekülkonstellation und Kristallitorientierung als Ursachen kautschukähnlicher Elastizität.Kolloid-Zeitschrift 87: 3–12.

    Google Scholar 

  99. London, Heinz. 1940. The High-Frequency Resistance of Superconducting Tin.Proceedings of the Royal Society of London. Series A 176: 522–33.

    ADS  Google Scholar 

  100. Lord Rayleigh. 1885. On Waves Propagated along the Plane Surface of an Elastic Solid.Proceedings of the London Mathematical Society s1-17: 4–11.

    MathSciNet  Google Scholar 

  101. Lovell, A. C. B. 1936. The Electrical Conductivity of Thin Metallic Films I—Rubidium on Pyrex Glass Surfaces.Proceedings of the Royal Society of London. Series A 157: 311–30.

    ADS  Google Scholar 

  102. Low, Morris. 2005.Science and the Building of a New Japan. Palgrave Macmillan, New York, NY.

  103. Lukirsky, P. 1936. On the Complex Photocathode Mechanism.Technical Physics of the U. S. S. R. 3: 685–99.

    Google Scholar 

  104. Martin, Joseph D. 2013. Solid Foundations: Structuring American Solid State Physics, 1939–1993. Ph.D. dissertation, The University of Minnesota.

  105. Martin, Joseph D. 2015a. Fundamental Disputations: The Philosophical Debates that Governed American Physics, 1939-1993.Historical Studies in the Natural Sciences 45: 703–57.

    Google Scholar 

  106. Martin, Joseph D. 2015b. What’s in a Name Change?Physics in Perspective 17: 3–32.

    ADS  Google Scholar 

  107. Martin, Joseph D. 2017. Prestige Asymmetry in American Physics: Aspirations, Applications, and the Purloined Letter Effect.Science in Context 30: 475–506.

    Google Scholar 

  108. Martin, Joseph D. 2018.Solid State Insurrection: How the Science of Substance Made American Physics Matter. University of Pittsburgh Press, Pittsburgh, PA.

  109. Martin, Joseph D., and Michel Janssen. 2015c. Beyond the Crystal Maze: Twentieth-Century Physics from the Vantage Point of Solid State Physics.HistoricalStudies in the Natural Sciences 45: 631–40.

    Google Scholar 

  110. Mayer, Joseph Edward, and Maria Goeppert Mayer. 1940.Statistical Mechanics. J. Wiley & Sons, New York, NY.

  111. Meyer, K. H., and H. F. Mark. 1940.Hochpolymere Chemie: Ein Lehr- und Handbuch für Chemiker und Biologen. Akademische Verlagsgesellschaft M.B.H., Leipzig.

  112. Mizushima, San-ichiro. 1927. Anomale Dispersion und Absorption elektrischer Wellen.Physikalische Zeitschrift 28: 418–21.

    Google Scholar 

  113. Mott, N. F., and R. W. Gurney. 1940.Electronic Processes in Ionic Crystals. The Clarendon Press, Oxford.

  114. Mott, N. F., and H. Jones. 1936.The Theory of the Properties of Metals and Alloys. The Clarendon Press, Oxford.

  115. Nagamiya, Takeo. 1940a. Statistical Mechanics of One-Dimensional Substances I.Proceedings of the Physico-Mathematical Society of Japan. 3rd Series 22: 705–20.

    MathSciNet  MATH  Google Scholar 

  116. Nagamiya, Takeo. 1940b. Statistical Mechanics of One-Dimensional Substances II.Proceedings of the Physico-Mathematical Society of Japan. 3rd Series 22: 1034–47.

    MathSciNet  MATH  Google Scholar 

  117. Nagamiya, Takeo. 1942. Bemerkung zur Harasimaschen Theorie des Schmelzens.Proceedings of the Physico-Mathematical Society of Japan. 3rd Series 24: 434.

    Google Scholar 

  118. Nagase-Reimer, Keiko, Walter Grunden, and Masakatsu Yamazaki. 2005. Nuclear Weapons Research in Japan during the Second World War.Historia Scientiarum 14: 201–40.

    Google Scholar 

  119. Nakajima, Sadao. 1996. Senkeiōtōriron no Seiritsu [The Advent of the Linear Response Theory].Butsuri 51: 699–705.

    Google Scholar 

  120. Nakano, Huzio. 1993. Linear Response Theory: A Historical Perspective.International Journal of Modern Physics B 7: 2397–2467.

    ADS  Google Scholar 

  121. Nakayama, S., D. L. Swain, and E. Yagi, eds. 1974.Science and Society in Modern Japan: Selected Historical Sources. M.I.T. East Asian Science Series. University of Tokyo Press, Tokyo.

  122. Nambu, Yoichiro. 1991. Summary of Personal Recollections of the Tokyo Group.Progress of Theoretical Physics Supplement 105: 111–15.

    ADS  Google Scholar 

  123. Nippon Sugaku-Buturigakkwaishi. 1943. Shōwa 18 Nendo Nenkai Kōen Abusutorakuto [Abstracts of the Presentations at the Annual Conference in AcademicYear 1943].Nippon Sugaku-Buturigakkwaishi 17: 13–24.

    Google Scholar 

  124. Nippon Sugaku-Buturigakkwaishi. 1946. Nippon Sūgaku-Butsurigakkai Kiroku [Records of the Physico-Mathematical Society of Japan].Nippon Sugaku-Buturigakkwaishi 18: 1–7.

    Google Scholar 

  125. Nye, Mary Jo. 1993.From Chemical Philosophy to Theoretical Chemistry: Dynamics of Matter and Dynamics of Disciplines, 1800–1950. University of California Press, Berkeley, CA.

  126. Ochiai, Kiichirô. 1928. On the Collision of a Slow Electron with an Atom.Proceedings of the Physico-Mathematical Society of Japan. 3rd Series 10: 120–26.

    MATH  Google Scholar 

  127. Ochiai, Kiichirô. 1929. On the Ionization by Electron Impact.Proceedings of the Physico-Mathematical Society of Japan. 3rd Series 11: 43–52.

    MATH  Google Scholar 

  128. Ochiai, Kiichirô. 1932. Energy of the Configuration (1s)2(2s).Proceedings of the Physico-Mathematical Society of Japan. 3rd Series 14: 388–96.

    MATH  Google Scholar 

  129. Ochiai, Kiichirô, and Hidetosi Takahasi. 1942. Über die Zustandssumme eines “co-operative” Systems.Proceedings of the Physico-Mathematical Society of Japan. 3rd Series 24: 271.

    Google Scholar 

  130. Oka, Syoten. 1942. Zur Theorie der statistischen Molekülgestalt hochpolymerer Kettenmoleküle unter Berücksichtigung der Behinderung der freien Drehbarkeit.Proceedings of the Physico-Mathematical Society of Japan. 3rd Series 24: 657–72.

    Google Scholar 

  131. Oka, Syoten. 1967. Kenkyū Nōto: Kōbunshibutsuri Sōsō no Koro [Research Note: On the Beginning of Polymer Physics].Oyobutsuri 36: 1028–32.

    Google Scholar 

  132. Oka, Syoten. 1977. Kenkyū Seikatsu 47 Nen [Research Life for 47 Years].Butsuri 32: 807–13.

    Google Scholar 

  133. Onsager, Lars. 1944. Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition.Physical Review. 65: 117–49.

    ADS  MathSciNet  MATH  Google Scholar 

  134. Ozawa, Takeshi. 2009. On the Initial Reception of Quantum Mechanics in Japan, 1925–1928.Historia Scientiarum 19: 29–42.

    Google Scholar 

  135. Pelogia, Karla, and Carlos Alexandre Brasil. 2017. Analysis of the Jun Ishiwara’s “The Universal Meaning of the Quantum of Action.”The European Physical Journal H 42: 507–21.

    ADS  Google Scholar 

  136. Rikagaku Kenkyūjo ed. 1942.Kenkyū Nijūgo Nen [Research in 25 Years]. Kaiyōsha, Tokyo.

  137. Sakai, Takuzô. 1930.Ryôshiron [Quantum Theory]. Iwanami Shoten, Tokyo.

  138. Sakai, Takuzô. 1937. The H-Theorem in Quantum Mechanics.Proceedings of the Physico-Mathematical Society of Japan. 3rd Series 19: 172–89.

    MATH  Google Scholar 

  139. Sakai, Takuzô. 1940. Gibbs’ Canonical Ensemble and the Distribution Law in Statistical Mechanics.Proceedings of the Physico-Mathematical Society of Japan. 3rd Series 22: 199–207.

    ADS  MathSciNet  MATH  Google Scholar 

  140. Sakai, Takuzô. 1943. Gomujō Danseiron [Studies on the Elasticity of Rubber-like Substances].Nippon Sugaku-Buturigakkwaishi 17: 226–34.

    Google Scholar 

  141. Seitz, Frederick. 1940.The Modern Theory of Solids. McGraw-Hill, New York, NY.

  142. Slater, John Clarke. 1939.Introduction to Chemical Physics. McGraw-Hill, New York, NY.

  143. Sommerfeld, Arnold, and Hans Bethe. 1933. Elektronentheorie der Metalle. In Aufbau der zusammenhängenden Materie. Vol. 24/2 ofHandbuch der Physik, 333–622. Springer, Berlin.

  144. Takabayasi, Takehiko. 1991. Physics in Tokyo University just before the Pacific War.Progress of Theoretical Physics Supplement 105: 43–45.

    ADS  Google Scholar 

  145. Takagi, Yutaka. 1990. Kyō Yūdentai to shiteno Chitabari [Barium Titanate as Ferroelectrics]. InKyoui no Chitabari [Barium Titanate, the Astonishing Material], edited by Murata Manufacturing, 41–48. Maruzen, Tokyo.

  146. Takahasi, Hidetosi. 1942. Eine einfache Methode zur Behandlung der statistischen Mechanik eindimensionaler Substanzen.Proceedings of the Physico-Mathematical Society of Japan. 3rd Series 24: 60–62.

    MathSciNet  Google Scholar 

  147. Takahasi, Hidetosi. 1967. Shosensei to Amanojaku [Some Teachers and a Contrary Person]. InWagashi Wagatomo [My Teachers, My Friends], 269–82. Misuzu Shobo, Tokyo.

  148. The Asahi Shimbun. 1940. Kōei no Gakusei [The Honored Students].The Asahi Shimbun, October 8, 1940: 7.

  149. The History of Science Society of Japan ed. 1970. Butsuri Kagaku [Physical Sciences]. Vol. 13 ofNihon Kagakugijutsushi Taikei [History of Science and Technology in Japan]. Dai-ichi Hoki Shuppan, Tokyo.

  150. The Physical Society of Japan, ed. 1978. Rekishi, Kaisō hen [History and Recollections]. Vol. 1 ofNihon no Butsurigakushi [History of Physics in Japan]. Tokai University Press, Tokyo.

  151. Toda, Morikazu. 1959. Ko Ochiai Kiichirô Sensei wo Itamu [In Memory of the Late Professor Kiichirô Ochiai].Butsuri 14: XXIII–XXIV.

    Google Scholar 

  152. Treloar, Leslie, and Ronald George. 1948. Stresses and Birefringence in Rubber Subjected to General Homogeneous Strain.Proceedings of the Physical Society 60: 135–44.

    ADS  Google Scholar 

  153. Volkenshtein, Mikhail. 1970.Molecules and Life: An Introduction to Molecular Biology. Plenum, New York, NY.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroto Kono.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kono, H. Ryogo Kubo in his formative years as a physicist. EPJ H 45, 175–204 (2020). https://doi.org/10.1140/epjh/e2020-10003-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjh/e2020-10003-8

Navigation