Skip to main content
Log in

History of accelerator neutrino beams

  • Published:
The European Physical Journal H Aims and scope Submit manuscript

Abstract

Neutrino beams obtained from proton accelerators were first operated in 1962. Since then, neutrino beams have been intensively used in particle physics and evolved in many different ways. We describe the characteristics of various neutrino beams, relating them to the historical development of the physics studies and discoveries. We also discuss some of the ideas still under consideration for future neutrino beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbott T. et al. (E-802 Collaboration) 1992. Measurement of particle production in proton induced reactions at 14.6 GeV∕mathrmc.Phys. Rev. D45: 3906

    ADS  Google Scholar 

  2. Abdurashitov J.N. et al. (SAGE Collaboration) 1994. Results from SAGE.Phys. Lett. B328: 234

    ADS  Google Scholar 

  3. Abe K. et al. (T2K Collaboration) 2011. The T2K experiment.Nucl. Instrum. Meth. A659: 106

    ADS  Google Scholar 

  4. Abe K. et al. (Hyper-Kamiokande Collaboration) 2015. Physics potential of a long-baseline neutrino oscillation experiment using a J-PARC neutrino beam and Hyper-Kamiokande.Nucl. Instrum. Meth. A659: 106

    ADS  Google Scholar 

  5. Abgrall N. et al. (NA61/SHINE Collaboration) 2018. Measurements of πpm, K± and proton double differential yields from the surface of the T2K replica target for incoming 31 GeV∕c protons with the NA61/SHINE spectrometer at the CERN SPS.Eur. Phys. J. C79: 100

    Google Scholar 

  6. Abramowicz H. et al. 1982. Prompt neutrino production in a proton beam-dump experiment.Z. Phys. C13: 179–89

    ADS  Google Scholar 

  7. Acciarri R. et al. (DUNE Collaboration) 2015. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE).FERMILAB-DESIGN-2016-02 https://arXiv:1512.06148

  8. Adamson P. et al. 2015. The NuMI Neutrino Beam.Nucl. Instrum. Meth. A806 279

    ADS  Google Scholar 

  9. Adey D. et al. 2013. nuSTORM - Neutrinos from STORed Muons: Proposal to the Fermilab PAC.FERMILAB-PROPOSAL1028. https://arXiv:1308.6822

  10. Agafonova N. et al. (OPERA Collaboration) 2010. Observation of a first Pnutau candidate in the OPERA experiment in the CNGS beam.Phys. Lett. B691: 138

    ADS  Google Scholar 

  11. Agafonova N. et al. (OPERA Collaboration) 2018. Final results of the OPERA experiment on ντ appearance in the CNGS neutrino beam.Phys. Rev. Lett. 120: 211801. [Erratum: Phys. Rev. Lett. 121: 139901]

    ADS  Google Scholar 

  12. Ahmad Q.R. et al. (SNO Collaboration) 2002. Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory.Phys. Rev. Lett. 89: 011301

    ADS  Google Scholar 

  13. Ahn M.H. et al. (K2K Collaboration) 2003. Indications of neutrino oscillation in a 250 km long baseline experiment.Phys. Rev. Lett. 90: 041801

    ADS  Google Scholar 

  14. Ahn M.H. et al. (K2K Collaboration) 2006. Measurement of neutrino oscillation by the K2K experiment.Phys. Rev. D74: 072003

    ADS  Google Scholar 

  15. Ahrens L.A. et al. 1990. Determination of electroweak parameters from the elastic scattering of muon neutrinos and antineutrinos on electrons.Phys. Rev. D41: 3297

    ADS  Google Scholar 

  16. Akimov D. 2017. Observation of coherent elastic neutrino-nucleus scattering.Science357 6356: 1123

    ADS  Google Scholar 

  17. Allaby J.V. et al. 1970. High-energy particle spectra from proton interactions at 19.2 GeV∕c. DOI: https://doi.org/10.5170/CERN-1970-012

  18. Amrosini G. et al. (NA56/SPY Collaboration) 1999. Measurement of charged particle production from 450 GeV∕c protons on beryllium.Eur. Phys. J. C10: 605

    ADS  Google Scholar 

  19. Anelli M. et al. (Ship Collaboration) 2015. A facility to Search for Hidden Particles (SHiP) at the CERN SPS. https://arXiv:1504.04956

  20. Anselmann P. et al. (GALLEX Collaboration) 1992. Neutrinos observed by GALLEX at Gran Sasso.Phys. Lett. B285: 376

    ADS  Google Scholar 

  21. Antonello M. et al. (MicroBooNE, LAr1-ND and ICARUS-WA104 Collaborations) 2015. A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam. https://arXiv:1503.01520

  22. Armbruster B. et al. (KARMEN Collaboration) 1998. Measurement of the weak neutral current excitation.   12C(νμν′μ)12C*(1+, 1; 15.1 MeV) at Eν = 29.8 MeV.Phys. Lett B423: 15

    ADS  Google Scholar 

  23. Asratyan A.E. et al. 1978. Search for prompt neutrinos in 70 GeV pN collisions.Phys. Lett. B79: 497

    ADS  Google Scholar 

  24. Astier P. et al. 1990. A search for neutrino oscillation.Nucl. Phys. B335: 517

    ADS  Google Scholar 

  25. Atherton H.W. et al. 1980. Precise measurements of particle production by 400 GeV∕c protonson beryllium targets. DOI: https://doi.org/10.5170/CERN-1980-007

  26. Auerbach L.B. et al. 2001. Measurement of charged-current reactions of νe on 12 C.Phys. Rev. C64: 065501

    ADS  Google Scholar 

  27. Ayres D.S. et al. 2007. The NOνA Technical Design Report.FERMILAB-DESIGN-2007-1. DOI: https://doi.org/10.2172/935497

  28. Astier P. et al. (NOMAD Collaboration) 2001. Final NOMAD results on νμντ and νe → ντ oscillations including a new search for ντ appearance using hadronic τ decays.Nucl. Phys. B611: 3

    ADS  Google Scholar 

  29. Aubert B. et al. 1974. Measurement of rates for muonless deep inelastic neutrino and antineutrino interactions.Phys. Rev. Lett. 32: 1457

    ADS  Google Scholar 

  30. Baker W.F. et al. 1974. Measurement of π± , K±, p, and p− production by 200 and 300 GeV∕c protons.Phys. Lett. B51: 303

    ADS  Google Scholar 

  31. Baldy R. et al. 1999. The CERN Neutrino beam to Gran Sasso (NGS).CERN-SL99-34-DI

  32. Barish B.C. et al. 1975. Neutral currents in high-energy neutrino collisions: an experimental search.Phys. Rev. Lett. 34: 538

    ADS  Google Scholar 

  33. Barish S.J. et al. 1974. Observation of single-pion production by a weak neutral current.Phys. Rev. Lett. 33: 448

    ADS  Google Scholar 

  34. Beavis D. et al. 1995. Long Baseline Neutrino Oscillation Experiment, E889, Physics Design Report.April 1995 BNL-52459

  35. Benvenuti A.C. et al. 1975. Observation of New-Particle production by high-energy neutrinos and antineutrinos.Phys. Rev. Lett. 34: 419

    ADS  Google Scholar 

  36. Berge P. et al. 1987. Total neutrino and antineutrino charged current cross section measurements in 100, 160, and 200 GeV narrow band beams.Z. Phys. C35: 443

    ADS  Google Scholar 

  37. Berge P. et al. 1992. Prompt neutrino results from a proton beam dump experiment.Z. Phys. C56: 175–180

    ADS  Google Scholar 

  38. Bergsma F. et al. 1984. A search for oscillations of muon neutrinos in an experiment with L/E ≅ 0.7 km/GeV.Phys. Lett. B142: 103

    ADS  Google Scholar 

  39. Bernardini G. 1964. Neutrino physics experimental.Conference ProceedingsC64-08-05: 37

    Google Scholar 

  40. Bernardini G. et al. 1964. Search for intermediate boson production in high-energy neutrino interactions.Phys. Lett. 13: 86

    ADS  Google Scholar 

  41. Bernardi G. et al. 1986. Anomalous electron production observed in the CERN PS neutrino beam.Phys. Lett. B181: 173

    ADS  Google Scholar 

  42. Bernstein R.H. et al. 1988. A proposal for a neutrino oscillation experiment in a tagged neutrino line.FERMILAB-PROPOSAL-0788

  43. Bienlein J.K. et al. 1964. Spark chamber study of high-energy neutrino interactions.Phys. Lett. 13: 80

    ADS  Google Scholar 

  44. Bilenky S.M. 1992. Lepton mixing. In Winter, K. (ed.).Neutrino physics: 177–195

  45. Bjorken J.D. 1968. Asymptotic Sum Rules at Infinite Momentum.Phys. Rev. 179: 1547

    ADS  Google Scholar 

  46. Block M.M. et al. 1964. Neutrino interactions in the CERN heavy liquid bubble chamber.Phys. Rev. Lett. 12: 262

    ADS  Google Scholar 

  47. Blondel A. 2005. Physics at a Neutrino Factory Complex.Nucl. Phys. B (Proc. Suppl.)143: 282

    ADS  Google Scholar 

  48. Bloom E.D. et al. 1969. High-Energy Inelastic e-p Scattering at 6° and 10°.Phys. Rev. Lett. 23: 930

    ADS  Google Scholar 

  49. Blumlein J. et al. 1992. Investigation of prompt electron-neutrino production in a proton beam dump experiment with the IHEP-JINR neutrino detector.Phys. Lett. B279: 405

    ADS  Google Scholar 

  50. Bogert D. et al. 1985. Determination of the Nucleon Structure by Means of the Weak Neutral Current.Phys. Rev. Lett. 55: 574

    ADS  Google Scholar 

  51. Breidenbach M. et al. 1969. Observed behavior of highly inelastic electron-proton scattering.Phys. Rev. Lett. 23: 935

    ADS  Google Scholar 

  52. Burguet-Castell J. et al. 2004. Neutrino oscillation physics with a higher gamma beta beam.Nucl. Phys. B695: 217

    ADS  Google Scholar 

  53. Burns R. et al. 1965. Determination of the neutrino flux. Presented by L. Lederman at the Informal conference on experimental neutrino physics 1965.ProceedingsCERN 65-32: 97

    Google Scholar 

  54. Cao J. et al. 2017. Roadmap for the international accelerator-based neutrino programme.FERMILAB-FN1031. https://arXiv:1704.08181

  55. Carey D.C., R.J. Stefanski and L.C. Teng 1971. Wide band neutrino beams with quadrupole focusing.IEEETrans. Nucl. Sci. 18: 755

    ADS  Google Scholar 

  56. Catanesi M.G. et al. (HARP Collaboration) 2007. The HARP detector at the CERN PS.Nucl. Instrum. Meth. A571: 527

    ADS  Google Scholar 

  57. Cazzoli E.G. et al. 1975. Evidence for ΔS = − ΔQ currents or Charmed-Baryon production by neutrinos.Phys. Rev. Lett. 34: 1125

    ADS  Google Scholar 

  58. Chen H.H. 1982. Neutrino Oscillation Experiments at Accelerators.Prog. Phys. 6: 206–21

    Google Scholar 

  59. Cho Y. et al. 1971. Pion production in proton-beryllium collisions at 12.4 GeV∕c.Phys. Rev. D4: 1967

    ADS  Google Scholar 

  60. Cline D. and D. Neuffer 1980. A muon storage ring for neutrino oscillations experiments.AIP Conference Proceedings68: 856

    ADS  Google Scholar 

  61. Conrad J.M., M.H. Shaevitz, and T. Bolton 1998. Precision measurements with high-energy neutrino beams.Rev. Mod. Phys. 70: 1341

    ADS  Google Scholar 

  62. Cowan C.L. et al. 1956. Detection of the Free Neutrino: a Confirmation.Science124: 103

    ADS  Google Scholar 

  63. Danby G. et al. 1962. Observation of high-energy neutrino reactions and the existence of two kinds of neutrinos.Phys. Rev. Lett. 9: 36

    ADS  Google Scholar 

  64. Davis R. Jr., D.S. Harmer, and K.C. Hoffman. 1968. Search for neutrinos from the sun.Phys. Rev. Lett. 20: 1205

    ADS  Google Scholar 

  65. De Rujula A. and R. Ruckl 1984. Neutrino and muon physics in the collider mode of future accelerators.CERN-TH3892/84

  66. De Rujula A., E. Fernandez and J.J. Gomez-Cadenas 1993. Neutrino fluxes at future hadron colliders.Nucl. Phys. B405: 80

    ADS  Google Scholar 

  67. Derwent P. 2012. Accelerators for intensity frontier research.Conference ProceedingsC1205201: 4185

    Google Scholar 

  68. Diemoz M.F. Ferroni and E. Longo 1986. Nucleon structure functions from neutrino scattering.Phys. Rep. 130: 293–380

    ADS  Google Scholar 

  69. Dore U., P.F. Loverre and L. Ludovici. 2016. Measurement of the Weinberg angle in neutrino interactions.Eur. Phys. J. H41(2):137

    Google Scholar 

  70. Dorenbosch J. et al. 1988. Prompt neutrino production in 400 GeV proton-copper interactions.Z. Phys. C40: 497

    ADS  Google Scholar 

  71. Dorenbosch J. et al. 1989. Experimental results on neutrino-electron scattering.Z. Phys. C41: 567

    Google Scholar 

  72. Drexlin G. 2003. Final neutrino oscillation results from LSND and Karmen.Nucl. Phys. Proc. Suppl. 118: 146

    ADS  Google Scholar 

  73. Duffy M.E. et al. 1988. Neutrino production by 400-GeV/c protons in a beam-dump experiment.Phys. Rev. D38: 2032

    ADS  Google Scholar 

  74. Dydak F. et al. 1984. A search for νμ oscillations in the Δm2 range 0.3–90 eV2.Phys. Lett. B134: 281

    ADS  Google Scholar 

  75. Eichten T. et al. 1973. Measurement of the neutrino-nucleon and antineutrino-nucleon total cross sections.Phys. Lett. B46: 274–80

    ADS  Google Scholar 

  76. Ellis J., J.L. Lopez and D.V. Nanopoulos. 1992. The prospect for CHORUS and NOMAD in the light of COBE and GALLEX.Phys. Lett. B292: 189

    ADS  Google Scholar 

  77. Eskut E. et al. (Chorus Collaboration) 2007. Final results on νμντ oscillation from the CHORUS experiment.Nucl. Phys. B793: 326

    ADS  Google Scholar 

  78. Fermi E. 1933. Attempt of a theory of emission of beta rays (in italian).Ric. Scient. 4(2): 491

    Google Scholar 

  79. Frampton P.H. and P. Vogel 1982. Massive Neutrinos.Phys. Rept. 82: 339

    ADS  Google Scholar 

  80. Fritze P. et al. 1980. Further study of the prompt neutrino flux from 400 GeV proton-nucleus collisions using BEBC.Phys. Lett. B96: 427

    ADS  Google Scholar 

  81. Fukuda Y. et al. (Super-Kamiokande Collaboration) 1998. Evidence for oscillation of atmospheric neutrinos.Phys. Rev. Lett. 81: 1562

    ADS  Google Scholar 

  82. Gaillard J.M. 1963. The Brookhaven neutrino experiment.The 1963 NPA seminars - The neutrino experiment ed. by C. Franzinetti. DOI: https://doi.org/10.5170/CERN-1963-037.33

  83. Gell-Mann M. 1964. A Schematic Model of Baryons and Mesons.Phys. Lett. 8: 214

    ADS  Google Scholar 

  84. Giesch M. et al. 1963. Status of magnetic horn and neutrino beam.Nucl. Instrum. Meth. 20: 58

    ADS  Google Scholar 

  85. Glashow S.L. 1961. Partial Symmetries of Weak Interactions.Nucl. Phys. 22: 579

    Google Scholar 

  86. Goldhaber M., L. Grodzins and A.W. Sunyar. 1958. Helicity of neutrinos.Phys. Rev. 109: 1015

    ADS  Google Scholar 

  87. Gross D.J. and F. Wilczek 1973. Ultraviolet Behavior of Nonabelian Gauge Theories.Phys. Rev. Lett. 30: 1343

    ADS  Google Scholar 

  88. Gschwendtner E. et al. 2013. CNGS, CERN Neutrinos to Gran Sasso, five years of running a 500 kilowatt neutrino beam facility at CERN.Conf. Proc.: C130512 MOPEA058, CERN-ACC-2013-0266

  89. Haidt D. 2015. The discovery of weak neutral currents.Adv. Ser. Direct. High Energy Phys. 23: 165–83

    ADS  Google Scholar 

  90. Hand L.N. et al. 1969. A study of 40–90 GeV neutrino interactions using a tagged neutrino beam. Proceedings. Second NAL Summer June 9–August 3, 1969C690609: 37

    Google Scholar 

  91. Harari H. 1989. Light Neutrinos as Cosmological Dark Matter: A CrucialExperimental Test.Phys. Lett. B216: 413

    ADS  Google Scholar 

  92. Hasert F.J. et al. 1973. Observation of neutrino-like interactions without muon or electron in the Gargamelle neutrino experiment.Phys. Lett. B46: 138

    ADS  Google Scholar 

  93. Hasert F.J. et al. 1973. Search for elastic muon-neutrino electron scattering.Phys. Lett. B46: 121

    ADS  Google Scholar 

  94. Hirata K.S. et al. (Kamiokande II Collaboration) 1988. Experimental study of the atmospheric neutrino flux.Phys. Lett. B205: 416

    ADS  Google Scholar 

  95. Hirata K.S. et al. (Kamiokande II Collaboration) 1990. Results from one thousand days of real time directional solar neutrino data.Phys. Rev. Lett. 65: 1297

    ADS  Google Scholar 

  96. Igarashi S. 2016. Recent progress of J-PARC MR beam commissioning and operation.Conference ProceedingsC16-07-03.2: MOAM6P60

  97. Jonker M. et al. 1980. Experimental study of prompt neutrino production in 400 GeV proton-nucleus collisions.Phys. Lett. B96: 435

    ADS  Google Scholar 

  98. Jonker M. 1983. Experimental study of x-distributions in semileptonic neutral-current neutrino reactions.Phys. Lett. B128: 117

    ADS  Google Scholar 

  99. Kleinknecht K. 1978. High energy neutrino reactions.Lecture for the 1978 CERN School of Physics - CERN Yellow Report78-10: 43

    Google Scholar 

  100. Kodama K. et al. (DONUT Collaboration) 2001. Observation of tau neutrino interactions.Phys. Lett. B504: 218

    ADS  Google Scholar 

  101. Kopp S. 2007. Accelerator-based neutrino beams.Phys. Rep. 439: 101

    ADS  Google Scholar 

  102. Kudenko Y. 2009. The near neutrino detector for the T2K experiment.Nucl. Instrum. Meth. A598: 289

    ADS  Google Scholar 

  103. Kuiper B. and G. Plass 1959. On the fast extraction of particles from a 25 GeV proton synchrotron.CERN59-30

  104. Kuiper B. and G. Plass 1965. Operational experience with the CPS Fast Ejection System.Conference ProceedingsC65-09-09: 579

    Google Scholar 

  105. Lee T.D. 1960. Intermediate boson hypothesis of weak interactions.Conference ProceedingsC60-08-25: 567

    Google Scholar 

  106. Lee T.D. and C.N. Yang 1960. Theoretical discussions on possible high-energy neutrino experiments.Phys. Rev. Lett. 4: 307

    ADS  Google Scholar 

  107. Limon P. 1974. A sign-selected dichromatic neutrino beam.Nucl. Instrum. Meth. 116: 317

    ADS  Google Scholar 

  108. Long K.R. 2018. Neutrinos from stored muons.Conference ProceedingsC17-04-03.1

  109. Longhin A., L. Ludovici and F. Terranova. 2015. A novel technique for the measurement of the electron neutrino cross-section.Eur. Phys. J. C75: 155

    ADS  Google Scholar 

  110. Ludovici L. and P. Zucchelli. 1996. Conceptual study of an “anti-tagged” experiment searching for νμνe oscillation. CERN-PPE 96–181 hep-ex 9701007

  111. Maki Z., M. Nakagawa and S. Sakata. 1962. Remarks on the unified model of elementary particles.Prog. Theor. Phys. 28: 870

    MATH  ADS  Google Scholar 

  112. Mann A.K. and H. Primakoff. 1977. Neutrino oscillations and the number of neutrino types.Phys. Rev. D15: 655

    ADS  Google Scholar 

  113. McFarland K.S. et al. NuTeV Collaboration 1998. Measurement of sin2θ W from neutrino nucleon scattering at NuTeV.Rencontres de Moriond 1998 Conference ProceedingsC98-03-14: 19

    Google Scholar 

  114. Mezzetto M. 2011. Future neutrino long baseline experiments.Phys. Part. Nucl. 42: 667

    Google Scholar 

  115. Mezzetto M. 2003. Physics reach of the beta beam.J. Phys. G29: 1771

    ADS  Google Scholar 

  116. Mück H.J. et al. 1972. Pionization in pp interactions at 12 and 24 GeV∕c.Phys. Lett. B39: 303

    ADS  Google Scholar 

  117. Naples D. et al. (NuTeV collaboration) 2003. High energy neutrino scattering results from NuTeV.Nucl. Phys. Proc. Suppl. 118: 164

    ADS  Google Scholar 

  118. Neuffer D. 1980. Design considerations for a muon storage ring.Conference ProceedingsC80-10-02: 199

    Google Scholar 

  119. Neuffer D. 1981. Design of Muon Storage Rings for neutrino oscillations experiments.IEEETrans. Nucl. Sci. 28: 2034

    ADS  Google Scholar 

  120. Orkin-Lecourtois A. et al. 1965. Fluxes of neutrinos and antineutrinos produced at CERN.Informal Conference on Experimental Neutrino Physics, ed. by C. Franzinetti. DOI: https://doi.org/10.5170/CERN-1965-032.111

  121. Paley J.M. et al. (MIPP Collaboration) 2014. Measurement of charged pion production yields off the NuMI Target.Phys. Rev. D90: 032001

    ADS  Google Scholar 

  122. Pauli W. 1930. Dear radioactive ladies and gentlemen (in german). Letter reproduced inPhys. Today31N9: 27

    Google Scholar 

  123. Perkins D. 2013. An early neutrino experiment: how we missed quark substructure in 1963.Eur. Phys. J. H38: 713

    Google Scholar 

  124. Politzer H.D. 1973. Reliable Perturbative Results for Strong Interactions?Phys. Rev. Lett.30: 1346

    ADS  Google Scholar 

  125. Pontecorvo B. 1957. Mesonium and antimesonium.Zh. Eksp. Teor. Fiz. Theor. 33: 549 and (1958) Sov. Phys. JETP6: 429

    Google Scholar 

  126. Pontecorvo B. 1958. Inverse beta processes and nonconservation of lepton chargeZh. Eksp. Teor. Fiz. Theor. 34: 247 and (1958) Sov. Phys. JETP 7: 172

    Google Scholar 

  127. Pontecorvo B. 1959. Electron and muon neutrinos.Zh. Eksp. Teor. Fiz. Theor. 37: 1751 and Sov. Phys. JETP10: 1236

    Google Scholar 

  128. Pontecorvo B. 1979. Tagging direct neutrinos. A first step to neutrino tagging.Lett. Nuovo Cim. 25: 257

    Google Scholar 

  129. Ramm C.A. 1963. Some considerations on neutrino facilities with large accelerators.CERN-NPA-Int-63-16 and 4th International Conference on High-Energy Accelerators, DubnaC63-08-21

  130. Ramm C.A. 1963. The CERN neutrino beam.CERN NPA/Int. 63-18 and Conference ProceedingsC63-09-09: 91

    Google Scholar 

  131. Ravn H. and B. Alardyce. 1989. On-line mass separators, treatise on heavy ions science. Edited by D. Bromley ( Plenum Press, New York)

  132. Richter B. 2000. Conventional beams or neutrino factories: the next generation of accelerator based neutrino experiments.SLAC-PUB-8587 hep-ph/0008222

  133. Salam A. 1968. Weak and Electromagnetic Interactions.Conf. Proc. C680519 Elementary Particle Theory. Ed. N. Svartholm: 367

  134. Schwartz M. 1960. Feasibility of using high energy neutrino to study weak interactions.Phys. Rev. Lett. 4: 306

    ADS  Google Scholar 

  135. Schwartz M. 1988. Nobel Lecture: The first high energy neutrino experiment.Nobelprize.org. Nobel Media AB 2014. Web. 1 Mar 2018. http://www.nobelprize.org/nobel_prizes/physics/laureates/1988/schwartzlecture.html

  136. Steinberger J. 1988. Nobel Lecture: Experiments with High-Energy Neutrino Beams.Nobelprize.org. Nobel Media AB 2014. Web. 10 Mar 2018. http://www.nobelprize.org/nobel_prizes/physics/laureates/1988/steinbergerlecture.html

  137. Stockdale I.E. et al. (CCFR Collaboration) 1984. Limits on muon neutrino oscillations in the mass range 30 < Δm2 < 1000 eV2∕c4.Phys. Rev. Lett. 52: 1384

    ADS  Google Scholar 

  138. t’Hooft G. 1971. Renormalizable Lagrangians for Massive Yang-Mills Fields.Nucl. Phys. B35: 167

    ADS  Google Scholar 

  139. Ushida N. et al. 1986. Limits to ν μ , ν eν τ oscillations and ν μ, ν eτ direct coupling.Phys. Rev. Lett. 57: 2897

    ADS  Google Scholar 

  140. van der Meer S. 1961. A directive device for charged particles and its use in an enhanced neutrino beam. DOI: https://doi.org/10.5170/CERN-1961-007

  141. Veltman M. 2003. Facts and Mysteries in Elementary Particle Physics.World Scientific

  142. Vogel H.F. et al. 1965. Construction and operation of the Argonne pion focusing horn.HEACC 65 Conference ProceedingsC65-09-09: 501

    Google Scholar 

  143. Volpe C. 2004. What about a beta beam facility for low-energy neutrinos?J. Phys. G30: L1

    ADS  Google Scholar 

  144. Wachsmuth H.W. 1969 The neutrino spectrum for the CERN 1967 neutrino beam (in NEUTRINO MEETING CERN 1969)CERN Report69-28: 33

    Google Scholar 

  145. Weinberg S. 1967. A Model of Leptons.Phys. Rev. Lett. 19: 1264

    ADS  Google Scholar 

  146. Winter K. (Editor) 1991. Neutrino physics. Cambridge monographs – Cambridge University Press 1991

  147. Yu J. et al. (NuTeV Collaboration) 1998. NuTeV SSQT performance.FERMILAB-TM-2040

  148. Zucchelli P. 2002. A novel concept for a /νe neutrino factory: the beta-beam.Phys. Lett. B532: 166

    ADS  Google Scholar 

  149. Zweig G. 1964. An SU(3) model for strong interaction symmetry and its breaking.CERN-TH-401

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucio Ludovici.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dore, U., Loverre, P. & Ludovici, L. History of accelerator neutrino beams. EPJ H 44, 271–305 (2019). https://doi.org/10.1140/epjh/e2019-90032-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjh/e2019-90032-x

Navigation