Skip to main content
Log in

Polarization of recoil photon in nonlinear Compton process

  • Regular Article - Atomic Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The polarization of recoil photon (\(\gamma '\)) in the nonlinear Compton process \(e + \vec L \rightarrow \vec {\gamma }' +e'\) in the interaction of a relativistic electron with a linearly polarized laser beam (\(\vec L\)) is studied within the Furry picture in the lowest order, tree-level S matrix element. In particular, we consider the asymmetry of differential cross sections \(\mathcal{A}\) for two independent axes describing the Compton process equal to the intrinsic spin variable \({\xi }^f_3\) that determines the polarization properties of \(\gamma '\). The sign and absolute value of the asymmetry determine the direction and degree of \(\gamma '\) polarization. We have analyzed the process in a wide range of laser intensity that covers existing and future experiments. Our results provide additional knowledge for studying nonlinear multi-photon effects in quantum electrodynamics and can be used in planning experiments at envisaged laser facilities.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: This is a purely theoretical study and all data used is cited in the reference list.]

References

  1. A. Fedotov, A. Ilderton, F. Karbstein, B. King, D. Seipt, H. Taya, G. Torgrimsson, Advances in QED with intense background fields. Phys. Rep. 1010, 1–138 (2023). arXiv:2203.00019v2 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  2. A. Di Piazza, C. Müller, K.Z. Hatsagortsyan, C.H. Keitel, Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys. 84, 1177 (2012)

    Article  ADS  Google Scholar 

  3. A.I. Nikishov, V.I. Ritus, Quantum processes in field of a plane electromagnetic wave and a constant field. Sov. Phys. JETP. 19, 529 (1964)

    MathSciNet  Google Scholar 

  4. V.I. Ritus, Quantum effects of the interaction of elementary particles with an intense electromagnetic field. J. Sov. Laser Res. 6(5), 497 (1985)

    Article  Google Scholar 

  5. D.Y. Ivanov, G.L. Kotkin, V.G. Serbo, Complete description of polarization effects in emission of a photon by an electron in the field of a strong laser wave. Eur. Phys. J. C 36, 127 (2004). arXiv:hep-ph/0501263

  6. D. Seipt, B. King, Spin- and polarization-dependent locally-constant-field-approximation rates for nonlinear Compton and Breit-Wheeler processes. Phys. Rev. A 102(5), 052805 (2020)

    Article  ADS  Google Scholar 

  7. B. King, S. Tang, Nonlinear Compton scattering of polarized photons in plane-wave backgrounds. Phys. Rev. A 102(2), 022809 (2020)

    Article  ADS  Google Scholar 

  8. A.I. Titov, B. Kmpfer, H. Takabe, A. Hosaka, Breit-Wheeler process in very short electromagnetic pulses. Phys. Rev. A 87, 042106 (2013)

    Article  ADS  Google Scholar 

  9. A. Di Piazza, Unveiling the transverse formation length of nonlinear Compton scattering. Phys. Rev. A 103(1), 012215 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  10. A. Ilderton, B. King, S. Tang, Toward the observation of interference effects in nonlinear Compton scattering. Phys. Lett. B 804, 135410 (2020)

    Article  Google Scholar 

  11. A. Di Piazza, M. Tamburini, S. Meuren, C.H. Keitel, Implementing nonlinear Compton scattering beyond the local-constant-field approximation. Phys. Rev. A 98, 012134 (2018)

    Article  ADS  Google Scholar 

  12. T. Heinzl, B. King, A.J. MacLeod, The locally monochromatic approximation to QED in intense laser fields. Phys. Rev. A 102, 0163110 (2020)

    Article  MathSciNet  Google Scholar 

  13. A.I. Titov, B. Kämpfer, A. Hosaka, H. Takabe, Quantum processes in short and intensive electromagnetic fields. Phys. Part. Nucl. 47, 456 (2016)

    Article  Google Scholar 

  14. L.F. Granz, O. Mathiak, S. Villalba-Chávez, C. Müller, Electron-positron pair production in oscillating electric fields with double-pulse structure. Phys. Lett. B 793, 85 (2019)

    Article  ADS  Google Scholar 

  15. U.H. Acosta, B. Kämpfer, Strong-field QED in Furry-picture momentum-space formulation: ward identities and Feynman diagrams. Phys. Rev. D 108, 016013 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  16. D.L. Burke et al., Positron production in multiphoton light-by-light scattering. Phys. Rev. Lett. 79, 1626 (1997)

    Article  ADS  Google Scholar 

  17. C. Bamber et al., Studies of nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses. Phys. Rev. D. 60, 092004 (1999)

    Article  ADS  Google Scholar 

  18. H. Abramowicz et al., Conceptual design report for the LUXE experiment. Eur. Phys. J. Spec. Top. 230, 2445–2560 (2021)

    Article  Google Scholar 

  19. S. Meuren on behalf of the FACET-II SFQED Collaboration. Probing Strong-field QED at FACET-II (SLAC E-320) (2019). https://conf.slac.stanford.edu/facet-2-2019/sites/ facet-2-2019.conf.slac.stanford.edu/files/ basic-page-docs/sfqed_2019.pdf; https://facet-ii.slac.stanford.edu/ proposals/accepted-proposals

  20. S. Meuren et al., On Seminal HEDP Research Opportunities Enabled by Colocating Multi-Petawatt Laser with High-Density Electron Beams. arXiv:2002.10051 [physics.plasm-ph]

  21. P. San Miguel et al., Commissioning and first measurements of the initial \(X\)-ray and \(\gamma \)-ray detectors at FACET-II. arXiv:2310.05535

  22. European X-Ray Free-Electron Laser Facility GmbH. https://www.xfel.eu/science/index_eng.html/ Q. Yu, D. Xu, B. Shen, T.E. Cowan, H.-P. Schlenvoigt, X-ray polarimetry and its application to strong-field QED. High Power Laser Science and Engineering, (2023). https://doi.org/10.1017/hpl.2023.45

  23. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii. Quantum Electrodynamics, Vol. 4 (Butterworth-Heinemann, 1982)

  24. A.I. Titov and B. Kämpfer, Non-linear Breit–Wheeler process with linearly polarized beams. Eur. Phys. J. D 74, 218 (2020)

  25. A.I. Akhiezer, V.B. Berestetsky, Quantum electrodynamics. Interscience Publishers. Revised Edition (January 1, 1965)

  26. M.V. Chistyakov, D.A. Rumyantsev, The Compton effect in strongly magnetized plasma. Int. J. Mod. Phys. A 24, 3995 (2009)

    Article  ADS  Google Scholar 

  27. A.A. Mushtukov, D.I. Nagirner, J. Poutanen, Compton scattering S matrix and cross section in strong magnetic field. Phys. Rev. D 93(2), 105003 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  28. W. Greiner, J. Reinhard, Quantum Electrodynamics, 3rd edn. (Springer, Berlin)

  29. A.I. Titov, A. Otto, B. Kämpfer, Multi-photon regime of non-linear Breit-Wheeler and Compton processes in short linearly and circularly polarized laser pulses. Eur. Phys. J. D 74, 39 (2020)

    Article  ADS  Google Scholar 

  30. A.I. Titov, B. Kämpfer, T. Shibata, A. Hosaka, H. Takabe, Laser pulse-shape dependance of Compton scattering. Eur. Phys. J. D 68, 299 (2014)

    Article  ADS  Google Scholar 

  31. B. Kämpfer, A.I. Titov, Impact of laser polarization on q-exponential photon tails in nonlinear Compton scattering. Phys. Rev. A 103, 033101 (2021)

    Article  ADS  Google Scholar 

  32. M. Boca, V. Florescu, Non-linear Compton scattering with a laser pulse. Phys. Rev. A 80, 053403 (2009), Erratum Phys. Rev. A 81, 039901 (2010)

  33. A.I. Titov, U. Hernandez, B. Kämpfer, Positron energy distribution in a factorized trident process. Phys. Rev. A 104, 062811 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I am grateful to B. Kämpfer for our fruitful previous collaboration on studying different topics of strong-field QED and to O. V. Teryaev for discussions of various aspects of spin physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Titov.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Titov, A.I. Polarization of recoil photon in nonlinear Compton process. Eur. Phys. J. D 78, 31 (2024). https://doi.org/10.1140/epjd/s10053-024-00827-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-024-00827-5

Navigation