Skip to main content
Log in

Elastic and inelastic cross sections for positron scattering from molecular oxygen

  • Regular Article – Atomic and Molecular Collisions
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Elastic, vibrational and rotational cross sections for positron scattering from molecular oxygen are reported within the close-coupling formalism, using a three-dimensional positron–target potential energy surface. The present elastic values show good agreement with a recently reported theoretical prediction and helps to better understand the observed discrepancies between theory and experiment for energies below \(1\,\textrm{eV}\). For energies up to the opening of the positronium channel, details of the elastic cross section are also discussed. The cross section for excitation of the fundamental vibrational mode shows a sharp onset at threshold followed by a peak, similar to the observed in our previous work for the N\(_2\) target, although roughly three times greater than the last one. The rotational excitation cross sections for positron scattering from O\(_2\) are reported.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data generated or analyzed during this study are included in this published article.]

References

  1. A. Jain, Phys. Rev. 41, 2437 (1990). https://doi.org/10.1103/PhysRevA.41.2437

    Article  ADS  Google Scholar 

  2. A. Jain, F.A. Gianturco, J. Phys. B Atom. Mol. Opt. Phys. 24, 2387 (1991). https://doi.org/10.1088/0953-4075/24/9/018

    Article  ADS  Google Scholar 

  3. F.A. Gianturco, A. Jain, J.A. Rodriguez-Ruiz, Phys. Rev. A 48, 4321 (1993). https://doi.org/10.1103/PhysRevA.48.4321

    Article  ADS  Google Scholar 

  4. F.A. Gianturco, T. Mukherjee, Eur. Phys. J. D 7, 211 (1999)

    Article  ADS  Google Scholar 

  5. F. Arretche, M.V. Barp, A. Scheidt, E.P. Seidel, W. Tenfen, J. Phys. B Atom. Mol. Opt. Phys. 52, 215201 (2019). https://doi.org/10.1088/1361-6455/ab4027

    Article  ADS  Google Scholar 

  6. M.J. Brunger, S.J. Buckman, K. Ratnavelu, J. Phys. Chem. Ref. Data 46, 023102 (2017)

    Article  ADS  Google Scholar 

  7. K.R. Hoffman, M.S. Dababneh, Y.-F. Hsieh, W.E. Kauppila, V. Pol, J.H. Smart, T.S. Stein, Phys. Rev. A 25, 1393 (1982). https://doi.org/10.1103/PhysRevA.25.1393

    Article  ADS  Google Scholar 

  8. O. Sueoka, A. Hamada, J. Phys. Soc. Jpn. 62, 2669 (1993)

    Article  ADS  Google Scholar 

  9. G. Karwasz, D. Pliszka, R. Brusa, Nucl. Instrum. Methods Phys. Res. B Beam Interact. Mater. At. 247, 68 (2006)

    Article  ADS  Google Scholar 

  10. A. Zecca, L. Chiari, A. Sarkar, M. Brunger, New J. Phys. 13, 115001 (2011)

    Article  ADS  Google Scholar 

  11. P.G. Coleman, T. Griffith, G. Heyland, T. Killen, Atomic physics 4, in Fourth Intenational Conference in Atomic Physics. ed. by G. Putlitz (Plenum Press, New York, London, 1975)

    Google Scholar 

  12. M. Charlton, T.C. Griffith, G.R. Heyland, G.L. Wright, J. Phys. B Atom. Mol. Opt. Phys. 16, 323 (1983). https://doi.org/10.1088/0022-3700/16/2/019

    Article  ADS  Google Scholar 

  13. Y. Katayama, O. Sueoka, S. Mori, J. Phys. B Atom. Mol. Opt. Phys. 20, 1645 (1987). https://doi.org/10.1088/0022-3700/20/7/030

    Article  ADS  Google Scholar 

  14. M.S. Dababneh, Y.-F. Hsieh, W.E. Kauppila, C.K. Kwan, S.J. Smith, T.S. Stein, M.N. Uddin, Phys. Rev. A 38, 1207 (1988). https://doi.org/10.1103/PhysRevA.38.1207

    Article  ADS  Google Scholar 

  15. L. Chiari, A. Zecca, S. Girardi, E. Trainotti, G. García, F. Blanco, R.P. McEachran, M.J. Brunger, J. Phys. B Atom. Mol. Opt. Phys. 45, 215206 (2012). https://doi.org/10.1088/0953-4075/45/21/215206

    Article  ADS  Google Scholar 

  16. W. Tenfen, E.P. Seidel, M.V. Barp, F. Arretche, J. Electron Spectrosc. Relat. Phenom. 255, 147160 (2022). https://doi.org/10.1016/j.elspec.2022.147160

    Article  Google Scholar 

  17. J. Franz, Eur. Phys. J. D 71, 1–11 (2017). https://doi.org/10.1140/epjd/e2017-70591-2

  18. W. Tenfen, M.V. Barp, F. Arretche, Phys. Rev. A 99, 022703 (2019)

    Article  ADS  Google Scholar 

  19. F.F. Frighetto, A.S. Barbosa, S. Sanchez, Phys. Rev. A 108, 012818 (2023). https://doi.org/10.1103/PhysRevA.108.012818

    Article  ADS  Google Scholar 

  20. V. Graves, J.D. Gorfinkiel, Eur. Phys. J. D 76, 43 (2022). https://doi.org/10.1140/epjd/s10053-022-00371-0

    Article  ADS  Google Scholar 

  21. L.A. Poveda, D. Assafrão, J.G. Pinheiro, J.R. Mohallem, Phys. Rev. A 100, 062706 (2019). https://doi.org/10.1103/PhysRevA.100.062706

    Article  ADS  Google Scholar 

  22. J.R. Mohallem, J. Mol. Struct. (THEOCHEM) 79, 11 (2004). https://doi.org/10.1016/j.theochem.2003.12.055

    Article  Google Scholar 

  23. L.A. Poveda, A. Dutra, J.R. Mohallem, D. Assafrão, Phys. Rev. A 87, 052702 (2013). https://doi.org/10.1103/PhysRevA.87.052702

    Article  ADS  Google Scholar 

  24. L.A. Poveda, D. Assafrão, J.R. Mohallem, Eur. Phys. J. D 70, 152 (2016). https://doi.org/10.1140/epjd/e2016-70120-y

    Article  ADS  Google Scholar 

  25. C.P. Gonçalves, J.R. Mohallem, J. Comp. Chem. 25, 1736 (2004). https://doi.org/10.1002/jcc.20093

    Article  Google Scholar 

  26. M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, J. Comp. Chem. 14, 1347 (1993). https://doi.org/10.1002/jcc.540141112

    Article  Google Scholar 

  27. P. Piecuch, S. Kucharski, K. Kowalski, M. Musial, Comp. Phys. Commun. 149, 71 (2002). https://doi.org/10.1016/S0010-4655(02)00598-2

    Article  ADS  Google Scholar 

  28. T. Noro, M. Sekiya, T. Koga, Theor. Chem. Acc. 131, 1124 (2012). https://doi.org/10.1007/s00214-012-1124-z

    Article  Google Scholar 

  29. D. Assafrão, H.R.J. Walters, A.D.F. Arretche, J.R. Mohallem, Phys. Rev. A 84, 022713 (2011). https://doi.org/10.1103/PhysRevA.84.022713

    Article  ADS  Google Scholar 

  30. A.M. Arthur, A. Dalgarno, R. Soc. 256, 540 (1960). https://doi.org/10.1098/rspa.1960.0125

    Article  Google Scholar 

  31. R.T. Pack, J. Chem. Phys. 60, 633 (1974). https://doi.org/10.1063/1.1681085

    Article  ADS  Google Scholar 

  32. J.M. Hutson, C.R.L. Sueur, (2018) arXiv:1811.09584

  33. M.H. Alexander, D.E. Manolopoulos, J. Chem. Phys. 86, 2044 (1987)

    Article  ADS  Google Scholar 

  34. R.J. LeRoy, N.S. Dattani, J.A. Coxon, A.J. Ross, P. Crozet, C. Linton, J. Chem. Phys. 131, 204309 (2009). https://doi.org/10.1063/1.3264688

    Article  ADS  Google Scholar 

  35. A. Newell, R. Baird, J. Appl. Phys. 36, 3751 (1965)

    Article  ADS  Google Scholar 

  36. W. Tenfen, K.T. Mazon, S.E. Michelin, F. Arretche, Phys. Rev. A 86, 042706 (2012). https://doi.org/10.1103/PhysRevA.86.042706

    Article  ADS  Google Scholar 

  37. F.B.L. Ellis-Gibbings, G. Garcıa, Eur. Phys. J. D 73, 266 (2019)

    Article  ADS  Google Scholar 

  38. J.P. Marler, C.M. Surko, Phys. Rev. A 72, 062713 (2005). https://doi.org/10.1103/PhysRevA.72.062713

    Article  ADS  Google Scholar 

  39. A. Zecca, L. Chiari, A. Sarkar, M.J. Brunger, New J. Phys. 13, 115001 (2011). https://doi.org/10.1088/1367-2630/13/11/115001

    Article  ADS  Google Scholar 

  40. A. Zecca, L. Chiari, E. Trainotti, D.V. Fursa, I. Bray, A. Sarkar, S. Chattopadhyay, K. Ratnavelu, M.J. Brunger, J. Phys. B Atom. Molec. Opt. Phys. 45, 015203 (2011). https://doi.org/10.1088/0953-4075/45/1/015203

  41. J.P. Sullivan, C. Makochekanwa, A. Jones, P. Caradonna, D.S. Slaughter, J. Machacek, R.P. McEachran, D.W. Mueller, S.J. Buckman, J. Phys. B At. Mol. Opt. Phys. 4, 035201 (2011)

    Article  ADS  Google Scholar 

  42. L.A. Poveda, J.R. Mohallem, Front. Phys. 10, 1 (2022). https://doi.org/10.3389/fphy.2022.890426

    Article  Google Scholar 

  43. A.C. Newell, R.C. Baird, J. Appl. Phys. 36, 3751 (1965). https://doi.org/10.1063/1.1713942

    Article  ADS  Google Scholar 

  44. J.P. Marler, C.M. Surko, Phys. Rev. A 72, 062713 (2005). https://doi.org/10.1103/PhysRevA.72.062713

    Article  ADS  Google Scholar 

  45. K. Fedus, Eur. Phys. J. D 70, 1 (2016)

    Article  Google Scholar 

  46. G.R. Alms, A. Burnham, W.H. Flygare, J. Chem. Phys. 63, 3321 (2008). https://doi.org/10.1063/1.431821

    Article  ADS  Google Scholar 

  47. K.L. Baluja, A. Jain, Phys. Rev. A 46, 1279 (1992). https://doi.org/10.1103/PhysRevA.46.1279

    Article  ADS  Google Scholar 

  48. G.F. Gribakin, W.A. King, J. Phys. B At. Mol. Opt. Phys. 27, 2639 (1994). https://doi.org/10.1088/0953-4075/27/12/021

    Article  ADS  Google Scholar 

  49. D.G. Green, J.A. Ludlow, G.F. Gribakin, Phys. Rev. A 90, 032712 (2014). https://doi.org/10.1103/PhysRevA.90.032712

    Article  ADS  Google Scholar 

  50. D. Assafrão, J.R. Mohallem, L.A. Poveda, (work in progress)

  51. J. Archer, S. Trilov, P. Coleman, J. Phys. Conf. Ser. 443, 2001 (2013). https://doi.org/10.1088/1742-6596/443/1/012001

    Article  Google Scholar 

  52. D.A. Przybyla, W. Addo-Asah, W.E. Kauppila, C.K. Kwan, T.S. Stein, Phys. Rev. A 60, 359 (1999). https://doi.org/10.1103/PhysRevA.60.359

    Article  ADS  Google Scholar 

  53. T. Mukherjee, A.S. Ghosh, J. Phys. B At. Mol. Opt. Phys. 29, 2347 (1996). https://doi.org/10.1088/0953-4075/29/11/022

    Article  ADS  Google Scholar 

  54. M.V. Barp, W. Tenfen, F. Arretche, Radiat. Phys. Chem. 179, 109140 (2021)

    Article  Google Scholar 

  55. M.T.N. Varella, E.M. de Oliveira, M.A. Lima, Nucl. Instr. and Meth. B 76, 052701 (2007)

    Google Scholar 

  56. T. Nishimura, F.A. Gianturco, Phys. Rev. A 72, 022706 (2005)

    Article  ADS  Google Scholar 

  57. M.T.N. Varella, E.M. de Oliveira, M.A. Lima, Nucl. Instr. Methods B 266, 435 (2008). https://doi.org/10.1016/j.nimb.2007.12.020

    Article  ADS  Google Scholar 

  58. M.R. Natisin, J.R. Danielson, C.M. Surko, J. Phys. B At. Mol. Opt. Phys. 47, 225209 (2014)

    Article  ADS  Google Scholar 

  59. E. Gerjuoy, S. Stein, Phys. Rev. 97, 1671 (1955). https://doi.org/10.1103/PhysRev.97.1671

    Article  ADS  Google Scholar 

  60. A.R. Swann, D.G. Green, Phys. Rev. Lett. 130, 033001 (2023). https://doi.org/10.1103/PhysRevLett.130.033001

    Article  ADS  Google Scholar 

  61. A. Robertson, M. Elford, R. Crompton, M.A. Morrison, W. Sun, W. Trail, Aust. J. Phys. 50, 441 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Brazilian agencies FAPES, CNPq and CAPES.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Denise Assafrão.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinheiro, J.G., Assafrão, D., Poveda, L.A. et al. Elastic and inelastic cross sections for positron scattering from molecular oxygen. Eur. Phys. J. D 77, 184 (2023). https://doi.org/10.1140/epjd/s10053-023-00764-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00764-9

Navigation