Skip to main content
Log in

Hydrogen dissociation degree in the Grimm-type glow discharge measured by optical emission spectroscopy

  • Regular Article – Plasma Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The hydrogen dissociation degree is measured by means of optical emission spectroscopy in the cathode sheath of cylindrical abnormal Grimm-type DC glow discharge operating in the hydrogen–argon mixture at low pressure. The degree of dissociation, ranging from 80% in the close vicinity of the cathode and decreasing to 60% towards the negative glow, is obtained from the intensity ratio of the hydrogen Balmer Hγ line and the diagonal Fulcher-α molecular bands. The cathode sheath thickness is extracted from the electric field strength distribution measured using Stark spectroscopy of the hydrogen Balmer Hα line. An electron temperature of 2.7 eV in the negative glow region is estimated by observing the intensity ratio of the diagonal Fulcher-α bands and the Hα line.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors' comment: The datasets supporting the conclusions of this article are available from the corresponding author upon reasonable request.]

References

  1. A. von Engel, Ionized Gases (Oxford Clarendon Press, Oxford, 1965)

    Book  MATH  Google Scholar 

  2. B. Chapman, Glow Discharge Processes: Sputtering and Plasma Etching (Wiley, New York, 1980)

    Google Scholar 

  3. R.K. Marcus, J.A. Broeckaert, Glow Discharge Plasmas in Analytical Spectroscopy (Wiley, Chichester, 2003)

    Google Scholar 

  4. P.F. Little, A. von Engel, The hollow-cathode effect and the theory of glow discharges. Proc. R. Soc. Lond. A 224, 209–227 (1954). https://doi.org/10.1098/rspa.1954.0152

    Article  ADS  Google Scholar 

  5. R.S. Pessoa, L.L. Tezani, H.S. Maciel, G. Petraconi, M. Massi, Study of SF6 and SF6/O2 plasmas in a hollow cathode reactive ion etching reactor using Langmuir probe and optical emission spectroscopy techniques. Plasma Sources Sci. Technol. 19, 025013–025016 (2010). https://doi.org/10.1088/0963-0252/19/2/025013

    Article  ADS  Google Scholar 

  6. M. Bacal, M. Wada, Negative hydrogen ion production mechanisms. Appl. Phys. Rev. 2, 021305 (2015). https://doi.org/10.1063/1.4921298

    Article  ADS  Google Scholar 

  7. M.M. Vasiljević, G.L. Majstorović, Dj. Spasojević, N. Konjević, Q-branch of Fulcher-α diagonal bands for determination of the axial temperature distribution in the cathode sheath region of hydrogen and hydrogen-argon abnormal glow discharge. J. Quant. Spectrosc. Ra. 254, 107195 (2020). https://doi.org/10.1016/j.jqsrt.2020.107195

    Article  Google Scholar 

  8. D. Spasojević, N.V. Ivanović, N.V. Nedić, M. Vasiljević, N.M. Šišović, N. Konjević, Iterative kinetic model application in diagnostics of argon abnormal DC glow discharges. Eur. Phys. J. D 77, 75 (2023). https://doi.org/10.1140/epjd/s10053-023-00650-4

    Article  ADS  Google Scholar 

  9. U. Fantz, H. Falter, P. Franzen, D. Wunderlich, M. Berger, A. Lorenz, W. Kraus, P. McNeely, R. Riedl, E. Speth, Spectroscopy–a powerful diagnostic tool in source development. Nucl. Fusion 46, S297 (2006). https://doi.org/10.1088/0029-5515/46/6/S10

    Article  ADS  Google Scholar 

  10. J.J. Dang, K.-J. Chung, Y.S. Hwang, A simple spectroscopic method to determine the degree of dissociation in hydrogen plasmas with wide-range spectrometer. Rev. Sci. Instrum. 87, 053503 (2016). https://doi.org/10.1063/1.4948919

    Article  ADS  Google Scholar 

  11. I.R. Videnović, N. Konjević, M.M. Kuraica, Spectroscopic investigations of a cathode fall region of the Grimm-type glow discharge. Spectrochim. Acta B 51, 1707–1731 (1996). https://doi.org/10.1016/S0584-8547(96)01533-9

    Article  ADS  Google Scholar 

  12. G.L. Majstorović, N.V. Ivanović, N.M. Šišović, S. Djurović, N. Konjević, Ar I and Ne I spectral line shapes for an abnormal glow discharge diagnostics. Plasma Sources Sci. Technol. 22, 045015 (2013). https://doi.org/10.1088/0963-0252/22/4/045015

    Article  ADS  Google Scholar 

  13. W. Grimm, Glimmentladungslampe für spektralanalytische Routinemessungen. Naturwissenschaften 54, 586 (1967). https://doi.org/10.1007/BF00636820

    Article  ADS  Google Scholar 

  14. W. Grimm, Eine neue Glimmentladungslampe für die optische Emissionsspektralanalyse. Spectrochim. Acta B 23, 443–454 (1968). https://doi.org/10.1016/0584-8547(68)80023-0

    Article  ADS  Google Scholar 

  15. N.P. Ferreira, H.G.C. Human, L.R.P. Butler, Kinetic temperatures and electron densities in the plasma of a side view Grimm-type glow discharge. Spectrochim. Acta B 35, 285–295 (1980). https://doi.org/10.1016/0584-8547(80)80092-9

    Article  ADS  Google Scholar 

  16. N.V. Ivanović, N.M. Šišović, Dj. Spasojević, N. Konjević, Measurement of the DC Stark shift for visible Ne I lines and electric field distribution in the cathode sheath of an abnormal glow discharge. J. Phys. D Appl. Phys. 50, 125201–125216 (2017). https://doi.org/10.1088/1361-6463/aa5c1f

    Article  ADS  Google Scholar 

  17. D. Spasojević, S. Mijin, N.M. Šišović, N. Konjević, Spectroscopic application of an iterative kinetic cathode sheath model to high voltage hollow cathode glow discharge in hydrogen. J. Appl. Phys. 119, 053301 (2016). https://doi.org/10.1063/1.4941267

    Article  ADS  Google Scholar 

  18. D. Spasojević, V. Steflekova, N.M. Šišović, N. Konjević, Spectroscopic application of an iterative kinetic model of the cathode-fall region in a hydrogen abnormal glow discharge. Plasma Sources Sci. Technol. 23, 012004 (2014). https://doi.org/10.1088/0963-0252/23/1/012004

    Article  ADS  Google Scholar 

  19. D. Spasojević, N.V. Ivanović, N.V. Nedić, N.M. Šišović, N. Konjević, Complex UV Ne II line shapes in the cathode sheath of an abnormal glow discharge. Plasma Sources Sci. Technol. 29, 085008 (2020). https://doi.org/10.1088/1361-6595/aba48a

    Article  ADS  Google Scholar 

  20. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd edn. (Cambridge University Press, Cambridge, 2007)

    MATH  Google Scholar 

  21. T.E. Sharp, Potential-energy curves for molecular hydrogen and its ions. Atom. Data Nucl. Data 2, 119–169 (1970). https://doi.org/10.1016/S0092-640X(70)80007-9

    Article  ADS  Google Scholar 

  22. H.M. Crosswhite, The Hydrogen Molecule Wavelength Tables of Gerhard Heinrich Dieke (Wiley-Interscience, New York, 1972)

    Google Scholar 

  23. G. Herzberg, Molecular Spectra and Molecular Structure, Spectra of Diatomic Molecules, vol. 1 (Krieger Publishing Co, Malabar FL, 1989)

    Google Scholar 

  24. I. Kovacs, Rotational Structure in the Spectra of Diatomic Molecules (Adam Hilger LTD, London, 1969)

    Google Scholar 

  25. S.A. Astashkevich, M. Käning, E. Käning, N.V. Kokina, B.P. Lavrov, A. Ohl, J. Röpcke, Radiative characteristics of 3p Σ, Π; 3d Π-, Δ- states of H2 and determination of gas temperature of low pressure hydrogen containing plasmas. J. Quant. Spectrosc. Ra. 56, 725–751 (1996). https://doi.org/10.1016/S0022-4073(96)00103-3

    Article  ADS  Google Scholar 

  26. U. Fantz, D. Wünderlich, Franck-condons factors, transition probabilities and radiative lifetimes for hydrogen molecules and their isotopomeres, INDC(NDS)-457 (2004)

  27. J. Geddes, R.W. McCullough, A. Donnelly, H.B. Gilbody, Dissociation of hydrogen in high-frequency discharges. Plasma Sources Sci. Technol. 2, 93 (1993). https://doi.org/10.1088/0963-0252/2/2/004

    Article  ADS  Google Scholar 

  28. R.F.G. Meulenbroeks, A.J. van Beek, A.J.G. van Helvoort, M.C.M. van de Sanden, D.C. Schram, Argon-hydrogen plasma jet investigated by active and passive spectroscopic means. Phys. Rev. E 49, 4397 (1994). https://doi.org/10.1103/PhysRevE.49.4397

    Article  ADS  Google Scholar 

  29. A. Bogaerts, R. Gijbels, Effects of adding hydrogen to an argon glow discharge: overview of relevant processes and some qualitative explanations. J. Anal. At. Spectrom. 15, 441–449 (2000). https://doi.org/10.1039/A909779A

    Article  Google Scholar 

  30. M. Capitelli, M. Dilonardo, Nonequilibrium vibrational populations of diatomic species in electrical discharges: effects of the dissociation rates. Chem. Phys. 24, 417–427 (1977). https://doi.org/10.1016/0301-0104(77)85102-1

    Article  Google Scholar 

  31. B.P. Lavrov, N. Lang, A.V. Pipa, J. Röpcke, On determination of the degree of dissociation of hydrogen in non-equilibrium plasmas by means of emission spectroscopy: II. Experimental verification. Plasma Sources Sci. Technol. 15, 147 (2006). https://doi.org/10.1088/0963-0252/15/1/021

    Article  ADS  Google Scholar 

  32. A. Bogaerts, A. Quentmeier, N. Jakubowski, R. Gijbels, Plasma diagnostics of an analytical Grimm-type glow discharge in argon and in neon: langmuir probe and optical emission spectrometry measurements. Spectrochim. Acta B 50, 1337 (1995)

    Article  ADS  Google Scholar 

  33. Z. Weiss, Emission spectroscopic diagnostics of weakly ionized argon-diluted plasmas: glow discharge and inductively coupled plasma. Plasma Sources Sci. Technol. 29, 105018 (2020). https://doi.org/10.1088/1361-6595/abb41e

    Article  ADS  Google Scholar 

  34. K. Kondo, K. Okazaki, H. Oyama, T. Oda, Y. Sakamoto, A. Iiyoshi, Electron temperature measurement using Fulcher-α (d3Πua3Σg) to Hα emissions in a weekly ionized plasma. Jap. J. Appl. Phys. 27, 1560 (1988). https://doi.org/10.1143/JJAP.27.1560

    Article  ADS  Google Scholar 

  35. G.R. Möhlmann, F.J. de Heer, Emission cross sections of the H2(3p3Πu→2s3Σ+g) transition for electron impact on H2. Chem. Phys. Lett. 43, 240–244 (1976). https://doi.org/10.1016/0009-2614(76)85294-3

    Article  ADS  Google Scholar 

  36. G.R. Möhlmann, F.J. de Heer, J. Los, Emission cross sections of Balmer-α, β, γ radiation for electrons (0–2000 eV) on H2 and D2. Chem. Phys. 25, 103–116 (1977). https://doi.org/10.1016/0301-0104(77)87067-5

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Ministry of Science, Technological Development and Innovations of the Republic of Serbia (Grant No. 451-03-47/2023-01/200162). Part of the results was presented at the 31st Summer School and International Symposium on the Physics of Ionized Gasses (SPIG), September 5–9, 2022, Belgrade, Serbia. Conference proceedings: https://publications.aob.rs/102/pdf/spig2022-23-8.pdf.

Author information

Authors and Affiliations

Authors

Contributions

MMV contributed to conceptualization, methodology, investigation, and writing. GLM contributed to conceptualization, methodology, investigation, and writing. IRV contributed to conceptualization, methodology, and writing—review. DS contributed to conceptualization, methodology, and supervision.

Corresponding author

Correspondence to Milica M. Vasiljević.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasiljević, M.M., Majstorović, G.L., Videnović, I.R. et al. Hydrogen dissociation degree in the Grimm-type glow discharge measured by optical emission spectroscopy. Eur. Phys. J. D 77, 130 (2023). https://doi.org/10.1140/epjd/s10053-023-00704-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00704-7

Navigation