Skip to main content
Log in

Terahertz waves emission from plasma under action of p-polarized tightly focused laser pulse

  • Regular Article – Plasma Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The theory of terahertz (THz) waves generation at the incidence of the focused p-polarized laser pulse on the plasma boundary is developed. The angular, spectral, and energy characteristics of the THz signal are studied as the function of the focusing degree and the incidence angle of laser radiation, as well as the plasma density. The frequency dependence of the THz signal energy is considered and it is established that the emission spectrum contains the broad line, and its position for tight focusing of laser radiation is determined by its reciprocal duration. The radiation pattern of the THz pulse is studied and it is shown that the decrease in the size of the laser pulse focal spot leads to the increase in the angle of radiation with respect to the normal to the plasma boundary, and for the tight focusing of the laser pulse, THz waves are emitted almost along the plasma-vacuum interface. It is established that the energy of the THz pulse noticeably increases when the p-polarized laser pulse is incident almost along the normal onto the near-critical plasma at the angle of total reflection, and the transverse size of the laser pulse decreases. It is shown that the emission of high-power THz pulses with the sufficiently high conversion rate occurs at the almost normal incidence of ultrashort tightly focused laser radiation on the boundary of near-critical plasma with rare electron collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Song, T. Nagatsuma, Handbook of Terahertz Technologies: Devices and Applications (Jenny Stanford Publishing, New York, 2015)

    Book  Google Scholar 

  2. X.-C. Zhang, A. Shkurinov, Y. Zhang, Nat. Photonics 11, 16 (2017)

    Article  ADS  Google Scholar 

  3. C. Weiss, R. Wallenstein, R. Beigang, Appl. Phys. Lett. 77, 4160 (2000)

    Article  ADS  Google Scholar 

  4. F. Kadlec, P. Kuzel, J.-L. Coutaz, Opt. Lett. 29, 2674 (2004)

    Article  ADS  Google Scholar 

  5. F. Kadlec, P. Kuzel, J.-L. Coutaz, Opt. Lett. 30, 1402 (2005)

    Article  ADS  Google Scholar 

  6. G.H. Welsh, K. Wynne, Opt. Express 17, 2470 (2009)

    Article  ADS  Google Scholar 

  7. E.V. Suvorov, R.A. Akhmedzhanov, D.A. Fadeev, I.F. Ilyakov, V.A. Mironov, B.V. Shishkin, Opt. Lett. 37, 2520 (2012)

    Article  ADS  Google Scholar 

  8. A. Gopal, S. Herzer, A. Schmidt, P. Singh, A. Reinhard, W. Ziegler, D. Brommel, A. Karmakar, P. Gibbon, U. Dillner, T. May, H.-G. Meyer, G.G. Paulus, Phys. Rev. Lett. 111, 074802 (2013)

    Article  ADS  Google Scholar 

  9. H. Hamster, A. Sullivan, S. Gordon, W. White, R.W. Falcone, Phys. Rev. Lett. 71, 2725 (1993)

    Article  ADS  Google Scholar 

  10. N. Yugami, T. Higashiguchi, H. Gao, S. Sakai, K. Takahashi, H. Ito, Y. Nishida, T. Katsouleas, Phys. Rev. Lett. 89, 065003 (2002)

    Article  ADS  Google Scholar 

  11. D. Dorranian, M. Starodubtsev, H. Kawakami, H. Ito, N. Yugami, Y. Nishida, Phys. Rev. E 68, 026409 (2003)

    Article  ADS  Google Scholar 

  12. P. Sprangle, J.R. Penano, B. Hafizi, C.A. Kapetanakos, Phys. Rev. E 69, 066415 (2004)

    Article  ADS  Google Scholar 

  13. C.B. Schroeder, E. Esarey, J. van Tilborg, W.P. Leemans, Phys. Rev. E 69, 016501 (2004)

    Article  ADS  Google Scholar 

  14. J. van Tilborg, C.B. Schroeder, C.V. Filip, C. Tóth, C.G.R. Geddes, G. Fubiani, R. Huber, R.A. Kaindl, E. Esarey, W.P. Leemans, Phys. Rev. Lett. 96, 014801 (2006)

    Article  ADS  Google Scholar 

  15. T. Nagashima, H. Hirayama, K. Shibuya, M. Hangyo, M. Hashida, S. Tokita, S. Sakabe, Opt. Express 17, 8807 (2009)

    Article  Google Scholar 

  16. F. Jahangiri, M. Hashida, T. Nagashima, S. Tokita, M. Hangyo, S. Sakabe, Appl. Phys. Lett. 99, 261503 (2011)

    Article  ADS  Google Scholar 

  17. T.I. Oh, Y.S. You, N. Jhajj, E.W. Rosenthal, H.M. Milchberg, K.Y. Kim, New J. Phys. 15, 075002 (2013)

    Article  ADS  Google Scholar 

  18. A.V. Balakin, V.B. Gildenburg, V.M. Gordienko, N.A. Kuzechkin, T.A. Semenov, P.M. Solyankin, I.A. Pavlichenko, Y. Zhu, A.P. Shkurinov, JOSA B 38, 3515 (2021)

    Article  ADS  Google Scholar 

  19. C. Vicario, A.V. Ovchinnikov, S.I. Ashitkov, M.B. Agranat, V.E. Fortov, C.P. Hauri, Opt. Lett. 39, 6632 (2014)

    Article  ADS  Google Scholar 

  20. C. Vicario, M. Jazbinsek, A.V. Ovchinnikov, O.V. Chefonov, S.I. Ashitkov, M.B. Agranat, C.P. Hauri, Opt. Express 23, 4573 (2015)

    Article  ADS  Google Scholar 

  21. A.A. Frolov, Plasma Phys. Control. Fusion 62, 0950020 (2020)

    Article  Google Scholar 

  22. A.A. Frolov, Phys. Plasmas 28, 013104 (2021)

    Article  ADS  Google Scholar 

  23. A.A. Frolov, J. Plasma Phys. 89, 905890107 (2023)

    Article  Google Scholar 

  24. F.W.J. Olver, Asymptotics and Special Functions (CRC Press, London, New York, 1997)

    Book  MATH  Google Scholar 

  25. J. Limpouch, V.T. Tikhonchuk, J. Dostál, R. Dudžák, M. Krupka, N.G. Borisenko, J. Nikl, A.A. Akunets, L.A. Borisenko, V.G. Pimenov, Plasma Phys. Control. Fusion 62, 035013 (2020)

    Article  ADS  Google Scholar 

  26. Ph. Nicolaï, M. Olazabal-Loumé, S. Fujioka, A. Sunahara, N. Borisenko, S. Gus’kov, A. Orekov, M. Grech, G. Riazuelo, C. Labaune, J. Velechowski, V. Tikhonchuk, Phys. Plasmas 19, 113105 (2012)

    Article  ADS  Google Scholar 

  27. V.P. Silin, Sov. Phys. JETP 20, 1510 (1964)

    Google Scholar 

  28. C. Chudoba, J.G. Fujimoto, E.P. Ippen, H.A. Haus, U. Morgner, F.X. Kärtner, V. Scheuer, G. Angelow, T. Tschudi, Opt. Lett. 26, 292 (2001)

    Article  ADS  Google Scholar 

  29. A.V. Ovchinnikov, S.I. Ashitkov, M.B. Agranat, D.S. Sitnikov, Quantum Electron. 38, 325 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Frolov.

Ethics declarations

Conflict of interest

The author has no conflicts to disclose.

Data Availability Statement

The data that supports the findings of this study are available within the article. This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Since this is a theoretical work, there are no external data associated with this manuscript.]

Appendix: Boundary value problem for p-polarized laser pulse

Appendix: Boundary value problem for p-polarized laser pulse

To solve the boundary value problem when the p-polarized laser pulse (1) is incident on a semi-bounded plasma, we will use the Maxwell equations

$$ \begin{aligned} rot{\mathbf{E}}_{L} \left( {{\mathbf{r}},t} \right) & = - \frac{1}{c}\frac{\partial }{\partial t}{\mathbf{B}}_{L} \left( {{\mathbf{r}},t} \right), \\ rot{\mathbf{B}}_{L} \left( {{\mathbf{r}},t} \right) & = \frac{1}{c}\frac{\partial }{\partial t}{\mathbf{E}}_{L} \left( {{\mathbf{r}},t} \right) + \frac{4\pi e}{c}N_{0e} {\mathbf{V}}_{L} \left( {{\mathbf{r}},t} \right), \\ \end{aligned} $$
(A1)

where \({\mathbf{E}}_{L} \left( {{\mathbf{r}},t} \right),\;{\mathbf{B}}_{L} \left( {{\mathbf{r}},t} \right)\) are the electric and magnetic fields of laser radiation, and the electron velocity \({\mathbf{V}}_{L} \left( {{\mathbf{r}},t} \right)\) is determined from the equation

$$ \left( {\frac{\partial }{\partial t} + i\nu_{ei} } \right){\mathbf{V}}_{L} \left( {{\mathbf{r}},t} \right) = \frac{e}{{m_{e} }}{\mathbf{E}}_{L} \left( {{\mathbf{r}},t} \right). $$
(A2)

In this case, from the set of equations (A1), (A2) follows the equation for the \(y\)-component of the laser pulse magnetic field \(B_{L} \left( {{\mathbf{r}},t} \right) = {\mathbf{e}}_{y} \cdot {\mathbf{B}}_{L} \left( {{\mathbf{r}},t} \right)\)

$$ \frac{{\partial^{2} }}{{\partial t^{2} }}B_{L} \left( {{\mathbf{r}},t} \right) + \omega_{p}^{2} B_{L} \left( {{\mathbf{r}},t} \right) - c^{2} \Delta B_{L} \left( {{\mathbf{r}},t} \right) = 0. $$
(A3)

where \(\omega_{p}\) is the plasma frequency, \(\Delta\) is the Laplace operator.

To solve Eq. (A3), we will use the Fourier transform in time and coordinate

$$ \begin{aligned} B_{L} \left( {{\mathbf{r}},t} \right) & = \int\limits_{ - \infty }^{ + \infty } {\frac{{{\text{d}}\omega }}{2\pi }} \int\limits_{ - \infty }^{ + \infty } {\frac{{{\text{d}}k_{x} }}{2\pi }} \exp \left( { - i\omega t + ik_{x} x} \right)\\ & \quad \times B_{L} \left( {\omega ,k_{x} ,z} \right), \\ B_{L} \left( {\omega ,k_{x} ,z} \right) & = \int\limits_{ - \infty }^{ + \infty } {{\text{d}}t} \int\limits_{ - \infty }^{ + \infty } {{\text{d}}x} \exp \left( {i\omega t - ik_{x} x} \right)B_{L} \left( {{\mathbf{r}},t} \right). \\ \end{aligned} $$
(A4)

Then from (A3) follows the ordinary differential equation for the Fourier transform of the magnetic field

$$ \frac{{{\text{d}}^{2} }}{{{\text{d}}z^{2} }}B_{L} \left( {\omega ,k_{x} ,z} \right) + \left[ {\frac{{\omega^{2} }}{{c^{2} }}\varepsilon \left( \omega \right) - k_{x}^{2} } \right]B_{L} \left( {\omega ,k_{x} ,z} \right) = 0, $$
(A5)

whose solution, taking into account the continuity of the tangential components of the field \(E_{L,x} \left( {\omega ,k_{x} ,z} \right)\) [see Eq. (4)] and \(B_{L} \left( {\omega ,k_{x} ,z} \right)\), has the form

$$ \begin{aligned} &B_{L} \left( {\omega ,k_{x} ,z} \right) \\ &\quad = B_{0} \left( {\omega ,k_{x} } \right)\Bigg\{ \exp \left( {iz\sqrt {\frac{{\omega^{2} }}{{c^{2} }} - k_{x}^{2} } } \right) \\ & \qquad + R\left( {\omega ,k_{x} } \right)\exp \left( { - iz\sqrt {\frac{{\omega^{2} }}{{c^{2} }} - k_{x}^{2} } } \right) \Bigg\},\;\;z \le 0, \\ &B_{L} \left( {\omega ,k_{x} ,z} \right) \\ & \quad = B_{0} \left( {\omega ,k_{x} } \right)T\left( {\omega ,k_{x} } \right)\exp \left( {iz\sqrt {\frac{{\omega^{2} }}{{c^{2} }}\varepsilon \left( \omega \right) - k_{x}^{2} } } \right),\;\;z \ge 0, \\ \end{aligned} $$
(A6)

where the reflection coefficient \(R\left( {\omega ,k_{x} } \right)\) and transmission coefficient \(T\left( {\omega ,k_{x} } \right)\) for p-polarized radiation determined by formula (6). Equating the expression \(B_{0} \left( {\omega ,k_{x} } \right)\exp \left\{ {iz\sqrt {\left( {{{\omega^{2} } \mathord{\left/ {\vphantom {{\omega^{2} } {c^{2} }}} \right. \kern-0pt} {c^{2} }}} \right) - k_{x}^{2} } } \right\}\) from (A6) to the Fourier transform of the incident pulse (1) near the boundary \(z = 0\), for \(B_{0} \left( {\omega ,k_{x} } \right)\) we obtain the following formula

$$ \begin{aligned} B_{0} \left( {\omega ,k_{x} } \right) & = B_{L}^{inc} \left( {\omega ,k_{x} ,z = 0} \right) \\ & = \frac{{E_{0L} \pi R\tau }}{\cos \alpha }\Bigg\{ \exp \left[ { - \frac{{\left( {\omega - \omega_{0} } \right)^{2} \tau^{2} }}{2}} \right] \\ & \qquad + \exp \left[ { - \frac{{\left( {\omega + \omega_{0} } \right)^{2} \tau^{2} }}{2}} \right] \Bigg\}\\ & \qquad \times \exp \left\{ { - \frac{{\left( {k_{x} - \left( {{\omega \mathord{\left/ {\vphantom {\omega c}} \right. \kern-0pt} c}} \right)\sin \alpha } \right)^{2} R^{2} }}{{2\cos^{2} \alpha }}} \right\}. \\ \end{aligned} $$
(A7)

Substituting formula (A7) into (A6) and using the inverse Fourier transform (A4), we obtain Eqs. (2), (3), (5) for the magnetic field of p-polarized laser radiation in vacuum and plasma.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frolov, A.A. Terahertz waves emission from plasma under action of p-polarized tightly focused laser pulse. Eur. Phys. J. D 77, 109 (2023). https://doi.org/10.1140/epjd/s10053-023-00693-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00693-7

Navigation