Skip to main content
Log in

Optical switching in molybdenum trioxide (MoO3)-doped vanadium pentaoxide (V2O5) thin films using Fabry–Perot cavity

  • Regular Article – Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

During the present work, molybdenum trioxide (MoO3)-doped vanadium pentaoxide (V2O5) thin films of different concentrations (4 wt%, 6 wt%, and 8 wt%) at two different thicknesses are deposited by standard thermal evaporation method on a glass substrate. Fourier transform infrared study and field-emission scanning electron microscopy are employed for structural and surface morphology characterization. The effects of thickness and concentration on the surface morphology and optical switching properties of the films are studied comprehensively. The optical switching behavior of molybdenum trioxide-doped vanadium pentaoxide (MoO3:V2O5) thin films is reported by using a Fabry–Perot cavity at the second harmonic wavelength (532 nm) of nanosecond Nd:YAG laser. The optical nonlinear parameters, viz. nonlinear refractive index (n2) and cubic susceptibility (χ3), of the material are obtained from optical switching characteristics. Optical switching action based on Kerr effect with a minimum recovery time of 5 ms is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data available on request from corresponding author.]

References

  1. S.F. Mingaleev, A.E. Miroshnichenko, Y.S. Kivshar, K. Busch, Phys. Rev. E 74, 046603 (2006)

    Article  ADS  Google Scholar 

  2. S. Tatsuura, T. Matsubara, M. Tian, H. Mitsu, I. Iwasa, Y. Sato, M. Furuki, Appl. Phys. Lett. 85, 540 (2004)

    Article  ADS  Google Scholar 

  3. M. Soljacic, M. Ibanescu, C. Luo, S.G. Johnson, S. Fan, Y. Fink, J.D. Joannopoulos, Proc. of SPIE 5000, 200 (2003)

    Article  ADS  Google Scholar 

  4. L.K. Oxenløwe, A. Clausen, M. Galili, H.C.H. Mulvad, H. Ji, H. Hu, E. Palushani. DTU Fotonik, the Technical University of Denmark, Kgs. Lyngby, Denmark) Chapter 17 - Ultra- High-Speed Optical Time Division Multiplexing (2013)

  5. M.P. Fok, P.R. Prucnal, Optical Switches (Woodhead publishing, Cambridge, 2010), pp.181–205. https://doi.org/10.1533/9780857090416.181

    Book  Google Scholar 

  6. A. Dhawan, Y. Sharma, L. Brickson, J.F. Muth, Opt. Mater. Express 4(6), 1128–1139 (2014)

    Article  ADS  Google Scholar 

  7. A. Kumar, R. Punia, A.K. Gupta, D. Mohan, K. Kapoor, Opt. Laser Technol. 95, 100–104 (2017)

    Article  ADS  Google Scholar 

  8. M.T. Hussein, R.R. Mohammed in IOP Conf. Series: Materials Science and Engineering, vol. 928 (IOP Publishing, 2020). p. 072002. doi:https://doi.org/10.1088/1757-899X/928/7/072002

  9. K.B. Manjunatha, R. Dileep, G. Umesh, B. Ramachandra Bhat, Mater. Lett. 105, 173–176 (2013). https://doi.org/10.1016/j.matlet.2013.03.076

    Article  Google Scholar 

  10. I. Glesk, P.J. Bock, P. Cheben, J.H. Schmid, J. Lapointe, S. Janz, Opt. Express 19(15), 14031 (2011). https://doi.org/10.1364/oe.19.014031

    Article  ADS  Google Scholar 

  11. Y. Tang, A. Siahmakoun, G. Sergio, M. Guina, M. Pessa, J. Opt. A Pure Appl. Opt. 8, 991–995 (2006). https://doi.org/10.1088/1464-4258/8/11/009

    Article  ADS  Google Scholar 

  12. N. Moll, S. Jochim, S. Gulde, R.F. Mahrt, B.J. Ofrein, in Proceedings of SPIE - The International Society for Optical Engineering (2006). https://doi.org/10.1117/12.646295

  13. B. Fisher, J. Genossar, G.M. Reisner, Solid State Commun. 226, 29–32 (2016)

    Article  ADS  Google Scholar 

  14. K. Schneider, J. Mater. Sci.: Mater. Electron. 31, 10478–10488 (2020)

    Google Scholar 

  15. L. Boudaoud, N. Benramdane, R. Desfeux, B. Khelifa, C. Mathieu, Catal. Today 113, 230–234 (2006)

    Article  Google Scholar 

  16. H. Khmissi, S.A. Mahmoud, A.A. Akl, Opt. Int. J. Light Electron Opt. 227, 165979 (2021)

    Article  Google Scholar 

  17. S. Chen, H. Ma, X. Yi, H. Wang, X. Tao, M. Chen, X. Li, C. Ke, Infrared Phys. Technol. 45, 239–242 (2004)

    Article  ADS  Google Scholar 

  18. T. Ben-Messaoud, G. Landry, J.P. Gariepy, B. Ramamoorthy, P.V. Ashrit, A. Hache, Opt. Commun. 281, 6024–6027 (2008)

    Article  ADS  Google Scholar 

  19. A. Mauger, C.M. Julien, AIMS Mater. Sci. 5(3), 349–401 (2018)

    Article  Google Scholar 

  20. N. Guru Prakash, M. Dhananjaya, B. Purusottam Reddy, K. Sivajee Ganesh, A. Lakshmi Narayana, O.M. Hussain, Mater. Today Proc. 3, 4076–4081 (2016)

    Article  Google Scholar 

  21. W. Wang, Y. Luo, D. Zhang, F. Luo, Appl. Opt. 45(14), 3378–3381 (2006)

    Article  ADS  Google Scholar 

  22. M. Poonam, K. Purnima, M. Barala, K. Yadav, Eur. Phys. J. D 75, 243 (2021)

    Article  ADS  Google Scholar 

  23. S.B. Zhang, D.W. Zuo, W.Z. Lu, Surf. Eng. (2016). https://doi.org/10.1080/02670844.2016.1252897pp1-7

    Article  Google Scholar 

  24. H.J.F. Picard, D. Vincent, Opt. Eng. 32(9), 2092–2099 (1993)

    Article  ADS  Google Scholar 

  25. V.V Shah, A. Basu, Thin Film Technology-A Layman’s Perception (Vigyan Prasar, 2008), pp. 41–70. ISBN-. 8174801561

  26. A. Chithambararaj, N.S. Sanjini, A. Chandra Bose, S. Velmathi, Catal. Sci. Technol. 3, 1405–1414 (2013)

    Article  Google Scholar 

  27. C.H. Prameela, M. Anjaiah, K. Krishna Murty, K. Srinivasarao, Indian J. Pure Appl. Phys. 51, 563–568 (2013)

    Google Scholar 

  28. V.N. Shevchuk, Y.N. Usatenk, P.Y. Demchenk, O.T. Antonyak, R.Y. Serkiz, Chem. Met. Alloys 4, 67–71 (2011)

    Article  Google Scholar 

  29. R.W. Boyd, Nonlinear Optics, 2nd edn. (Academic Press, San Diego, 2003)

    Google Scholar 

  30. L.A. Gomez, C.B. de Araujo, D.N. Messias, L. Misoguti, M. Nalin, J. Appl. Phys. 100, 116105 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Science and Technology, Government of India, New Delhi, for providing the XRD facility through the FIST Scheme.

Funding

This work was not supported by any Funding Agency National or International.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poonam.

Ethics declarations

Conflict of interest

The authors report there are no competing interests to declare.

Consent for publication

We declare that this manuscript is original, has not been published before, and is not currently being considered for publication elsewhere.

Ethical approval

We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poonam, Mohan, D., Bhan, S. et al. Optical switching in molybdenum trioxide (MoO3)-doped vanadium pentaoxide (V2O5) thin films using Fabry–Perot cavity. Eur. Phys. J. D 77, 54 (2023). https://doi.org/10.1140/epjd/s10053-023-00635-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00635-3

Navigation