Skip to main content
Log in

Stimulated Brillouin scattering in an inhomogeneous amplifier cell: a self-consistent solution approach

  • Regular Article – Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this paper, the amplification of the injected Stokes wave in inhomogeneous media has been studied. Numerical calculations based on a self-consistent solution of the Maxwell equations for the electric fields and the Navier–stokes equation for the acoustic fields are used to explain the amplification of the Stokes waves. To consider inhomogeneous media, the SBS amplifier cell is divided into several parts by transparent thin surfaces with uniform density distribution. This process was applied to several configurations of SBS gain factor changes in the cell, including exponential and linear changes in Brillouin gain factor according to the subdivision within the cell, and the results were compared. The results show that the length of the medium plays an essential role in the growth of SBS performance. Also, by the optimum selection of the gain profile, a non-uniform gas pressure distribution in the SBS cell can improve the energy reflectivity and the optical breakdown threshold.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting with the corresponding author.]

References

  1. E. Garmire, Stimulated Brillouin review: invented 50 years ago and applied today. Int. J. Opt. 2018, 2459501 (2018)

    Google Scholar 

  2. T. Omatsu, H.J. Kong, S. Park, S. Cha, H. Yoshida, K. Tsubakimoto et al., The Current Trends in SBS and phase conjugation. Laser Part. Beams 30, 117–174 (2012)

    ADS  Google Scholar 

  3. A. Brignon, J.-P. Huignard, Phase Conjugate Laser Optics, vol. 9, Wiley, New York (2004)

  4. G.S. He, Optical phase conjugation: principles, techniques, and applications. Prog. Quantum Electron. 26, 131–191 (2002)

    ADS  Google Scholar 

  5. Z. Bai, H. Yuan, Z. Liu, P. Xu, Q. Gao, R.J. Williams et al., Stimulated Brillouin scattering materials, experimental design and applications: a review. Opt. Mater. 75, 626–645 (2018)

    ADS  Google Scholar 

  6. M. Damzen, V. Vlad, A. Mocofanescu, V. Babin, Stimulated Brillouin Scattering: Fundamentals and Applications, CRC Press, Boca Raton (2010)

  7. Y. Wang, Z. Lu, W. He, Z. Zheng, Y. Zhao, A new measurement of stimulated Brillouin scattering phase conjugation fidelity for high pump energies. Laser Part. Beams 27, 297–302 (2009)

    ADS  Google Scholar 

  8. D. Lin, H. Gao, Z. Lü, S. Wang, X. Zhao, Dependence of stimulated Brillouin scattering on the bandwidth, mode number, and mode separation of a laser, in Advanced Laser Technologies 2005, pp. 63441G-63441G-6 (2006)

  9. W. Xiao-Hui, L. Zhi-Wei, L. Dian-Yang, W. Chao, Z. Xiao-Yan, T. Xiu-Zhang et al., Investigation of stimulated Brillouin scattering for broadband KrF laser. Chin. Phys. 13, 1733–1737 (2004)

    Google Scholar 

  10. F. Starikov, G. Kochemasov, Novel phenomena at stimulated Brillouin scattering of vortex laser beams. Opt. Commun. 193, 207–215 (2001)

    ADS  Google Scholar 

  11. H.S. Kim, D.-K. Ko, G. Lim, B.H. Cha, J. Lee, The influence of laser gain on stimulated Brillouin scattering in an active medium. Opt. Commun. 167, 165–170 (1999)

    ADS  Google Scholar 

  12. D.A. Rockwell, A review of phase-conjugate solid-state lasers. IEEE J. Quantum Electron. 24, 1124–1140 (1988)

    ADS  Google Scholar 

  13. M.C. Gower, R.G. Caro, phase conjugation of KrF laser radiation. Le Journal de Physique Colloques 44, C2-19-C2-25 (1983)

    Google Scholar 

  14. A. Offenberger, M. Cervenan, A. Yam, A. Pasternak, Stimulated Brillouin scattering of CO2 laser radiation from underdense plasma. J. Appl. Phys. 47, 1451–1458 (1976)

    ADS  Google Scholar 

  15. D.T. Hon, Pulse compression by stimulated Brillouin scattering. Opt. Lett. 5, 516–518 (1980)

    ADS  Google Scholar 

  16. Z. Liu, Y. Wang, Z. Bai, Y. Wang, D. Jin, H. Wang et al., Pulse compression to one-tenth of phonon lifetime using quasi-steady-state stimulated Brillouin scattering. Opt. Express 26, 23051–23060 (2018)

    ADS  Google Scholar 

  17. I. Velchev, D. Neshev, W. Hogervorst, W. Ubachs, Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering. Quantum Electron. IEEE J. 35, 1812–1816 (1999)

    ADS  Google Scholar 

  18. Y. Wang, X. Zhu, Z. Lu, H. Zhang, Generation of 360 ps laser pulse with 3 J energy by stimulated Brillouin scattering with a nonfocusing scheme. Opt. Express 23, 23318–23328 (2015)

    ADS  Google Scholar 

  19. H. Yoshida, T. Hatae, H. Fujita, M. Nakatsuka, S. Kitamura, A high-energy 160-ps pulse generation by stimulated Brillouin scattering from heavy fluorocarbon liquid at 1064 nm wavelength. Opt. Express 17, 13654–13662 (2009)

    ADS  Google Scholar 

  20. M. Jaberi, P. Jamshidi, S. Panahibakhsh, Control of SBS pulse compression by interaction geometrical parameters. Optics Commun. 530, 129194 (2022)

    Google Scholar 

  21. S. Schiemann, W. Ubachs, W. Hogervorst, Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator-amplifier setup. Quantum Electron. IEEE J. 33, 358–366 (1997)

    ADS  Google Scholar 

  22. R. Menzel, H.J. Eichler, Temporal and spatial reflectivity of focused beams in stimulated Brillouin scattering for phase conjugation. Phys. Rev. A 46, 7139–7149 (1992)

    ADS  Google Scholar 

  23. Y. Wang, W. Zhang, Y. Huang, J. Peng, Stimulated Brillouin scattering slow light in high nonlinearity silica microstructure fiber. Opt. Fiber Technol. 15, 1–4 (2009)

    ADS  Google Scholar 

  24. V. Kovalev, N. Kotova, R. Harrison, “Slow Light” in stimulated Brillouin scattering: on the influence of the spectral width of pump radiation on the group index. Opt. Express 17, 17317–17323 (2009)

    ADS  Google Scholar 

  25. Z. Shi, A. Schweinsberg, J.E. Vornehm, M.A.M. Gámez, R.W. Boyd, Low distortion, continuously tunable, positive and negative time delays by slow and fast light using stimulated Brillouin scattering. Phys. Lett. A 374, 4071–4074 (2010)

    ADS  Google Scholar 

  26. Z. Zhu, W. Gao, C. Mu, H. Li, Reversible orbital angular momentum photon–phonon conversion. Optica 3, 212–217 (2016)

    ADS  Google Scholar 

  27. H. Li, B. Zhao, L. Jin, D. Wang, W. Gao, Flat gain over arbitrary orbital angular momentum modes in Brillouin amplification. Photonics Res. 7, 748–753 (2019)

    Google Scholar 

  28. H. Li, B. Zhao, J. Ni, W. Gao, Tailoring spatial structure of Brillouin spectra via spiral phase precoding. Photonics Res 9, 637–642 (2021)

    Google Scholar 

  29. C. She, G. Herring, H. Moosmüller, S. Lee, Stimulated Rayleigh-Brillouin gain spectroscopy in pure gases. Phys. Rev. Lett. 51, 1648 (1983)

    ADS  Google Scholar 

  30. C.W. Ballmann, J.V. Thompson, A.J. Traverso, Z. Meng, M.O. Scully, V.V. Yakovlev, Stimulated Brillouin scattering microscopic imaging. Sci. Rep. 5, 18139 (2015)

    ADS  Google Scholar 

  31. D.L. Carroll, R. Johnson, S.J. Pfeifer, R.H. Moyer, Experimental investigations of stimulated Brillouin scattering beam combination. JOSA B 9, 2214–2224 (1992)

    ADS  Google Scholar 

  32. H. J. Kong, J. W. Yoon, D. W. Lee, Beam combination using stimulated Brillouin scattering phase conjugate (2006)

  33. H.J. Kong, J.W. Yoon, J.S. Shin, D.H. Beak, Long-term stabilized two-beam combination laser amplifier with stimulated Brillouin scattering mirrors. Appl. Phys. Lett. 92, 021120--021120-3 (2008)

    ADS  Google Scholar 

  34. H.J. Kong, J.S. Shin, D.H. Beak, S. Park, J.W. Yoon, Current trends in laser fusion driver and beam combination laser systems using stimulated Brillouin scattering phase conjugate mirrors for a fusion driver. JKPS 56, 177–183 (2010)

    ADS  Google Scholar 

  35. X. Xu, C. Feng, J.-C. Diels, Optimizing sub-ns pulse compression for high energy application. Opt. Express 22, 13904–13915 (2014)

    ADS  Google Scholar 

  36. A.I. Erokhin, I.V. Smetanin, Experimental and theoretical study of self-phase modulation in sbs compression of high-power laser pulses. J. Russ. Laser Res. 31, 452–461 (2010)

    Google Scholar 

  37. R. Chu, M. Kanefsky, J. Falk, Numerical study of transient stimulated Brillouin scattering. J. Appl. Phys. 71, 4653–4658 (1992)

    ADS  Google Scholar 

  38. M. Jaberi, A. Farahbod, H.R. Soleimani, Effect of pump mode structure on reflectance of SBS mirrors. Opt. Quant. Electron. 49, 53 (2017)

    Google Scholar 

  39. M. Jaberi, A.H. Farahbod, H. Rahimpur Soleimani, Spectral behavior of phase conjugated mirror in a two-pass optical amplifier. Iran. J. Phys. Res. 15, 71–79 (2015)

    Google Scholar 

  40. M. Jaberi, A. Farahbod, H.R. Soleimani, Spectral behavior of amplified back-scattered Stokes pulse in two-cell phase conjugating mirror. Opt. Commun. 335, 7–15 (2015)

    ADS  Google Scholar 

  41. V.A. Gorbunov, S. Papernyĭ, V. Petrov, V. Startsev, Time compression of pulses in the course of stimulated Brillouin scattering in gases. Sov. J. Quantum Electron. 13, 900 (1983)

    ADS  Google Scholar 

  42. E. Hagenlocker, R. Minck, W. Rado, Effects of phonon lifetime on stimulated optical scattering in gases. Phys. Rev. 154, 226 (1967)

    ADS  Google Scholar 

  43. V.I. Kovalev, V. Popovichev, V.V. Ragul’skii, F. Faizullov, Gain and line width in stimulated Brillouin scattering in gases. Sov. J. Quantum Electron. 2, 69 (1972)

    ADS  Google Scholar 

  44. A. Kummrow, H. Meng, Pressure dependence of stimulated Brillouin backscattering in gases. Opt. Commun. 83, 342–348 (1991)

    ADS  Google Scholar 

  45. M. Damzen, M. Hutchinson, W. Schroeder, Direct measurement of the acoustic decay times of hypersonic waves generated by SBS. IEEE J. Quantum Electron. 23, 328–334 (1987)

    ADS  Google Scholar 

  46. M. Damzen, M. Hutchinson, High-efficiency laser-pulse compression by stimulated Brillouin scattering. Opt. Lett. 8, 313–315 (1983)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors equally contributed to manuscript preparation.

Corresponding author

Correspondence to M. Jaberi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaberi, M., Panahibakhsh, S. Stimulated Brillouin scattering in an inhomogeneous amplifier cell: a self-consistent solution approach. Eur. Phys. J. D 77, 53 (2023). https://doi.org/10.1140/epjd/s10053-023-00625-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00625-5

Navigation