Skip to main content
Log in

Relationship between robustness of imaginarity and quantum coherence

  • Regular Article – Quantum Information
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Quantum state generally belongs to complex Hilbert space. Based on quantum resource theory, imaginarity of a quantum state can be quantified by robustness of imaginarity. This paper explores the relationship between the robustness of imaginarity and quantum coherence. For a single qubit, its robustness of imaginarity is complementary to the quantum coherence. Moreover, the quantum coherence of a state in a d-dimensional Hilbert space (d being larger than two) is lower bounded by its robustness of imaginarity.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availibility Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data has been listed.]

References

  1. E. Chitambar, G. Gour, Quantum resource theories. Rev. Mod. Phys. 91, 025001 (2019). https://doi.org/10.1103/RevModPhys.91.025001

    Article  ADS  MathSciNet  Google Scholar 

  2. T. Baumgratz, M. Cramer, M.B. Plenio, Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014). https://doi.org/10.1103/PhysRevLett.113.140401

    Article  ADS  Google Scholar 

  3. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009). https://doi.org/10.1103/RevModPhys.81.865

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. E. Chitambar, M.-H. Hsieh, Relating the resource theories of entanglement and quantum coherence. Phys. Rev. Lett. 117, 020402 (2016). https://doi.org/10.1103/PhysRevLett.117.020402

    Article  ADS  Google Scholar 

  5. S. Designolle, R. Uola, K. Luoma, N. Brunner, Set coherence: basis-independent quantification of quantum coherence. Phys. Rev. Lett. 126, 220404 (2021). https://doi.org/10.1103/PhysRevLett.126.220404

    Article  ADS  MathSciNet  Google Scholar 

  6. Q.-M. Ding, Q.-C. Liu, No-go theorems for deterministic purification and probabilistic enhancement of coherence. J. Phys. A 55, 105301 (2022). https://doi.org/10.1088/1751-8121/ac4ecd

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Q.-M. Ding, X.-X. Fang, X. Yuan, T. Zhang, H. Lu, Efficient estimation of multipartite quantum coherence. Phys. Rev. Res. 3, 023228 (2021). https://doi.org/10.1103/PhysRevResearch.3.023228

    Article  Google Scholar 

  8. C.L. Liu, Q.-M. Ding, D.M. Tong, Superadditivity of convex roof coherence measures. J. Phys. A 51, 414012 (2018). https://doi.org/10.1088/1751-8121/aab64e

    Article  MathSciNet  MATH  Google Scholar 

  9. G. Gour, R.W. Spekkens, The resource theory of quantum reference frames: manipulations and monotones. New J. Phys. 10, 033023 (2008). https://doi.org/10.1088/1367-2630/10/3/033023

    Article  ADS  Google Scholar 

  10. G. Gour, I. Marvian, R.W. Spekkens, Measuring the quality of a quantum reference frame: the relative entropy of frameness. Phys. Rev. A 80, 012307 (2009). https://doi.org/10.1103/PhysRevA.80.012307

    Article  ADS  Google Scholar 

  11. F.G.S.L. Brandão, M. Horodecki, J. Oppenheim, J.M. Renes, R.W. Spekkens, Resource theory of quantum states out of thermal equilibrium. Phys. Rev. Lett. 111, 250404 (2013). https://doi.org/10.1103/PhysRevLett.111.250404

    Article  ADS  Google Scholar 

  12. M. Berry, Quantal phase factors accompanying adiabatic changes. Proc. Math. Phys. Eng. Sci. 392, 45 (1984). https://doi.org/10.1098/rspa.1984.0023

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Xiao, M.C. Chang, Q. Niu, Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959 (2010). https://doi.org/10.1103/RevModPhys.82.1959

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. H. Bruus, K. Flensberg, Many-Body Quantum Theory in Condensed Matter Physics (Oxford Univ. Press, Oxford, 2007)

    Google Scholar 

  15. F.J. Dyson, The threefold way. Algebraic structure of symmetry groups and ensembles in quantum mechanics. J. Math. Phys. 3, 1199 (1962). https://doi.org/10.1063/1.1703863

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. K. Pál, T. Vértesi, Efficiency of higher-dimensional Hilbert spaces for the violation of Bell inequalities. Phys. Rev. A 77, 042105 (2008). https://doi.org/10.1103/PhysRevA.77.042105

    Article  ADS  MathSciNet  Google Scholar 

  17. M. McKague, M. Mosca, N. Gisin, Simulating quantum systems using real Hilbert spaces. Phys. Rev. Lett. 102, 020505 (2009). https://doi.org/10.1103/PhysRevLett.102.020505

    Article  ADS  MathSciNet  Google Scholar 

  18. M. Chen, W. Can, F.M. Liu, J.W. Wang, C. Ying, Z.X. Shang, Y.L. Wu, M. Gong, H. Deng, F.T. Liang, Q. Zhang, C.-Z. Peng, X.B. Zhu, A. Cabello, C.-Y. Lu, J.-W. Pan, Ruling out real-valued standard formalism of quantum theory. Phys. Rev. Lett. 128, 040403 (2022). https://doi.org/10.1103/PhysRevLett.128.040403

    Article  ADS  Google Scholar 

  19. Z.-D. Li, Y.-L. Mao, M. Weilenmann, A. Tavakoli, H. Chen, L. Feng, S.-J. Yang, M.-O. Renou, D. Trillo, T.P. Le, N. Gisin, A. Acín, M. Navascués, Z. Wang, J. Fan, Testing real quantum theory in an optical quantum network. Phys. Rev. Lett. 128, 040402 (2022). https://doi.org/10.1103/PhysRevLett.128.040402

    Article  ADS  Google Scholar 

  20. A. Hickey, G. Gour, Quantifying the imaginarity of quantum mechanics. J. Phys. A 51, 414009 (2018). https://doi.org/10.1088/1751-8121/aabe9c

    Article  MathSciNet  MATH  Google Scholar 

  21. K.D. Wu, T.V. Kondra, S. Rana, C.M. Scandolo, G.-Y. Xiang, C.-F. Li, G.-C. Guo, A. Streltsov, Operational resource theory of imaginarity. Phys. Rev. Lett. 126, 090401 (2021). https://doi.org/10.1103/PhysRevLett.126.090401

    Article  ADS  MathSciNet  Google Scholar 

  22. K.D. Wu, T.V. Kondra, S. Rana, C.M. Scandolo, G.-Y. Xiang, C.-F. Li, G.-C. Guo, A. Streltsov, Resource theory of imaginarity: quantification and state conversion. Phys. Rev. A 103, 032401 (2021). https://doi.org/10.1103/PhysRevA.103.032401

    Article  ADS  MathSciNet  Google Scholar 

  23. T. Paul, T. Qureshi, Measuring quantum coherence in multislit interference. Phys. Rev. A 95, 042110 (2017). https://doi.org/10.1103/PhysRevA.95.042110

    Article  ADS  Google Scholar 

  24. X. Chen, Y. Deng, S. Liu, T. Pramanik, J. Mao, J. Bao, C.H. Zhai, T. Dai, H. Yuan, J. Guo, S.-M. Fei, M. Huber, B. Tang, Y. Yang, Z. Li, Q. He, Q. Gong, J. Wang, A generalized multipath delayed-choice experiment on a large-scale quantum nanophotonic chip. Nat. Commun. 12, 2712 (2021)

    Article  ADS  Google Scholar 

  25. C. Napoli, T.R. Bromley, M. Cianciaruso, M. Piani, N. Johnston, G. Adesso, Robustness of coherence: an operational and observable measure of quantum coherence. Phys. Rev. Lett. 116, 150502 (2016). https://doi.org/10.1103/PhysRevLett.116.150502

    Article  ADS  Google Scholar 

  26. R. Takagi, B. Regula, K. Bu, Z.-W. Liu, G. Adesso, Operational advantage of quantum resources in subchannel discrimination. Phys. Rev. Lett. 122, 140402 (2019). https://doi.org/10.1103/PhysRevLett.122.140402

    Article  ADS  Google Scholar 

  27. R. Takagi, B. Regula, General resource theories in quantum mechanics and beyond: operational characterization via discrimination tasks. Phys. Rev. X 9, 031053 (2019). https://doi.org/10.1103/PhysRevX.9.031053

    Article  Google Scholar 

  28. W. Zheng, Z. Ma, H. Wang, S.M. Fei, X. Peng, Experimental demonstration of observability and operability of robustness of coherence. Phys. Rev. Lett. 120, 230504 (2018). https://doi.org/10.1103/PhysRevLett.120.230504

    Article  ADS  Google Scholar 

  29. R.A. Horn, C.R. Johnson, Matrix Analysis, 2nd edn. (Cambridge University Press, Cambridge, 2012)

  30. S. Cheng, M.J.W. Hall, Complementarity relations for quantum coherence. Phys. Rev. A 92, 042101 (2015). https://doi.org/10.1103/PhysRevA.92.042101

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zheng.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Hb., Hua, M., Zheng, Q. et al. Relationship between robustness of imaginarity and quantum coherence. Eur. Phys. J. D 77, 38 (2023). https://doi.org/10.1140/epjd/s10053-023-00618-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00618-4

Navigation