Skip to main content
Log in

Electron impact ionization in the icy Galilean satellites’ atmospheres

  • Regular Article – Atomic and Molecular Collisions
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Electron impact ionization is critical in producing the ionospheres on many planetary bodies and, as discussed here, is critical for interpreting spacecraft and telescopic observations of the tenuous atmospheres of the icy Galilean satellites of Jupiter (Europa, Ganymede, and Callisto), which form an interesting planetary system. Fortunately, laboratory measurements, extrapolated by theoretical models, were developed and published over a number of years by K. Becker and colleagues (see Deutsch et al. in Adv At Mol Opt Phys 57:87–155, 2009) to provide accurate electron impact ionization cross sections for atoms and molecules, which are crucial to correctly interpret these measurements. Because of their relevance for the Jovian icy satellites, we provide useful fits to the complex, semiempirical Deutsch–Märk formula for energy-dependent electron impact ionization cross sections of gas-phase water products (i.e., H\(_2\)O, H\(_2\), O\(_2\), H, O). These are then used with measurements of the thermal plasma in the Jovian magnetosphere to produce ionization rates for comparison with solar photo-ionization rates at the icy Galilean satellites.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [All data generated or analyzed during this study are included in this published article].

References

  1. P. Addison, L. Liuzzo, H. Arnold, S. Simon, Influence of Europa’s time-varying electromagnetic environment on magnetospheric ion precipitation and surface weathering. J. Geophys. Res.: Space Phys. 126(5), e2020JA029087 (2021)

    ADS  Google Scholar 

  2. J. Alday, L. Roth, N. Ivchenko, K.D. Retherford, T.M. Becker, P. Molyneux, J. Saur, New constraints on Ganymede’s hydrogen corona: analysis of Lyman-\(\alpha \) emissions observed by HST/STIS between 1998 and 2014. Planet. Space Sci. 148, 35–44 (2017)

    ADS  Google Scholar 

  3. F. Bagenal, P.A. Delamere, Flow of mass and energy in the magnetospheres of Jupiter and Saturn. J. Geophys. Res. 116, 5209 (2011)

    Google Scholar 

  4. F. Bagenal, V. Dols, The space environment of Io and Europa. J. Geophys. Res.: Space Phys. 125(5), e2019JA027485 (2020)

    ADS  Google Scholar 

  5. F. Bagenal, E. Sidrow, R.J. Wilson, T.A. Cassidy, V. Dols, F.J. Crary, A.J. Steffl, P.A. Delamere, W.S. Kurth, W.R. Paterson, Plasma conditions at Europa’s orbit. Icarus 261, 1–13 (2015)

    ADS  Google Scholar 

  6. F. Bagenal, J.D. Sullivan, Direct plasma measurements in the Io torus and inner magnetosphere of Jupiter. J. Geophys. Res. 86(A10), 8447–8466 (1981)

    ADS  Google Scholar 

  7. C.A. Barth, C.W. Hord, A.I.F. Stewart, W.R. Pryor, K.E. Simmons, W.E. McClintock, J.M. Ajello, K.L. Naviaux, J.J. Aiello, Galileo ultraviolet spectrometer observations of atomic hydrogen in the atmosphere of Ganymede. Geophys. Res. Lett. 24(17), 2147–2150 (1997)

    ADS  Google Scholar 

  8. J.W. Boring, R.E. Johnson, C.T. Reimann, J.W. Garret, W.L. Brown, K.J. Marcantonio, Ion-induced chemistry in condensed gas solids. Nucl. Instrum. Methods Phys. Res. 218(1–3), 707–711 (1983)

    ADS  Google Scholar 

  9. A.L. Broadfoot, B.R. Sandel, D.E. Shemansky, J.C. McConnell, G.R. Smith, J.B. Holberg, S.K. Atreya, T.M. Donahue, D.F. Strobel, J.L. Bertaux, Overview of the Voyager ultraviolet spectrometry results through Jupiter encounter. J. Geophys. Res. 86(A10), 8259–8284 (1981)

    ADS  Google Scholar 

  10. W.L. Brown, W.M. Augustyniak, K.J. Marcantonio, E.H. Simmons, J.W. Boring, R.E. Johnson, C.T. Reimann, Electronic sputtering of low temperature molecular solids. Nucl. Instrum. Methods Phys. Res. Sect. B 1(2–3), 307–314 (1984)

    ADS  Google Scholar 

  11. W.L. Brown, W.M. Augustyniak, E. Simmons, K.J. Marcantonio, L.J. Lanzerotti, R.E. Johnson, J.W. Boring, C.T. Reimann, G. Foti, V. Pirronello, Erosion and molecule formation in condensed gas films by electronic energy loss of fast ions. Nucl. Instrum. Methods Phys. Res. 198(1), 1–8 (1982)

    ADS  Google Scholar 

  12. W.L. Brown, L.J. Lanzerotti, J.M. Poate, W.M. Augustyniak, “Sputtering’’ of ice by MeV light ions. Phys. Rev. Lett. 40(15), 1027 (1978)

    ADS  Google Scholar 

  13. S.R. Carberry Mogan, O.J. Tucker, R.E. Johnson, L. Roth, J. Alday, V. Vorburger, P. Wurz, A. Galli, H.T. Smith, B. Marchand, A.V. Oza, Callisto’s atmosphere: first evidence for H\(_2\) and constrains on H\(_2\)O. J. Geophys. Res. Planets 127, e2022JE007294 (2022)

    ADS  Google Scholar 

  14. J.F. Cooper, R.E. Johnson, B.H. Mauk, H.B. Garrett, N. Gehrels, Energetic ion and electron irradiation of the icy Galilean satellites. Icarus 149(1), 133–159 (2001)

    ADS  Google Scholar 

  15. N.J. Cunningham, J.R. Spencer, P.D. Feldman, D.F. Strobel, K. France, S.N. Osterman, Detection of Callisto’s oxygen atmosphere with the Hubble space telescope. Icarus 254, 178–189 (2015)

    ADS  Google Scholar 

  16. J.P. Desclaux, Relativistic Dirac–Fock expectation values for atoms with Z = 1 to Z = 120. At. Data Nucl. Data Tables 12(4), 311–406 (1973)

    ADS  Google Scholar 

  17. H. Deutsch, K. Becker, S. Matt, T.D. Märk, Theoretical determination of absolute electron-impact ionization cross sections of molecules. Int. J. Mass Spectrom. 197, 37–69 (2000)

    Google Scholar 

  18. H. Deutsch, K. Becker, M. Probst, T.D. Maerk, The semiempirical Deutsch–Märk formalism: a versatile approach for the calculation of electron-impact ionization cross sections of atoms, molecules, ions, and clusters. Adv. At. Mol. Opt. Phy. 57, 87–155 (2009)

    ADS  Google Scholar 

  19. H. Deutsch, T. Märk, Calculation of absolute electron impact ionization cross-section functions for single ionization of He, Ne, Ar, Kr, Xe, N and F. Int. J. Mass Spectrom. Ion Process. 79(3), R1–R8 (1987)

    ADS  Google Scholar 

  20. H. Deutsch, P. Scheier, K. Becker, T.D. Märk, Revised high energy behavior of the Deutsch–Märk (DM) formula for the calculation of electron impact ionization cross sections of atoms. Int. J. Mass Spectrom. 233(1–3), 13–17 (2004)

    Google Scholar 

  21. V.J. Dols, F. Bagenal, T.A. Cassidy, F.J. Crary, P.A. Delamere, Europa’s atmospheric neutral escape: importance of symmetrical O\(_2\) charge exchange. Icarus 264, 387–397 (2016)

    ADS  Google Scholar 

  22. P.D. Feldman, M.A. McGrath, D.F. Strobel, H.W. Moos, K.D. Retherford, B.C. Wolven, HST/STIS ultraviolet imaging of polar aurora on Ganymede. Astrophys. J. 535(2), 1085 (2000)

    ADS  Google Scholar 

  23. L.A. Frank, K.L. Ackerson, J.H. Wolfe, J.D. Mihalov, Observations of plasmas in the Jovian magnetosphere. J. Geophys. Res. 81(4), 457–468 (1976)

    ADS  Google Scholar 

  24. D.T. Hall, P.D. Feldman, M.A. McGrath, D.F. Strobel, The far-ultraviolet oxygen airglow of Europa and Ganymede. Astrophys. J. 499(1), 475 (1998)

    ADS  Google Scholar 

  25. D.T. Hall, D.F. Strobel, P.D. Feldman, M.A. McGrath, H.A. Weaver, Detection of an oxygen atmosphere on Jupiter’s moon Europa. Nature 373(6516), 677 (1995)

    ADS  Google Scholar 

  26. W.F. Huebner, J. Mukherjee, Photoionization and photodissociation rates in solar and blackbody radiation fields. Planet. Space Sci. 106, 11–45 (2015)

    ADS  Google Scholar 

  27. R.E. Johnson, Energetic Charged-Particle Interactions with Atmospheres and Surfaces (Springer, Berlin, 1990)

    Google Scholar 

  28. R.E. Johnson, J.W. Boring, C.T. Reimann, L.A. Barton, E.M. Sieveka, J.W. Garrett, K.R. Farmer, W.L. Brown, L.J. Lanzerotti, Plasma ion-induced molecular ejection on the Galilean satellites: energies of ejected molecules. Geophys. Res. Lett. 10(9), 892–895 (1983)

    ADS  Google Scholar 

  29. R.E. Johnson, R.W. Carlson, J.F. Cooper, C. Paranicas, M.H. Moore, M.C. Wong, Radiation effects on the surfaces of the Galilean satellites. Jupit.: Planet Satell. Magnetos. 1, 485–512 (2004)

    ADS  Google Scholar 

  30. R.E. Johnson, L.J. Lanzerotti, W.L. Brown, Planetary applications of ion induced erosion of condensed-gas frosts. Nucl. Instrum. Methods Phys. Res. 198(1), 147–157 (1982)

    ADS  Google Scholar 

  31. K.K. Khurana, M.G. Kivelson, V.M. Vasyliunas, N. Krupp, J. Woch, A. Lagg, B.H. Mauk, W.S. Kurth, The configuration of Jupiter’s magnetosphere. Jupit.: Planet Satell. Magnetos 1, 593–616 (2004)

    ADS  Google Scholar 

  32. M.G. Kivelson, F. Bagenal, W.S. Kurth, F.M. Neubauer, C. Paranicas, J. Saur, Magnetospheric interactions with satellites. Jupit.: Planet Satell. Magnetos. 1, 513–536 (2004)

    ADS  Google Scholar 

  33. N. Krupp, V.M. Vasyliunas, J. Woch, A. Lagg, K.K. Khurana, M.G. Kivelson, B.H. Mauk, E.C. Roelof, D.J. Williams, S.M. Krimigis, W.S. Kurth, L.A. Frank, W.R. Paterson, Dynamics of the Jovian magnetosphere, in Jupiter. The Planet, Satellites and Magnetosphere, vol. 1, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon (Cambridge University Press, Cambridge, 2004), pp.617–638

    Google Scholar 

  34. S. Kumar, D.M. Hunten, The atmospheres of Io and other satellites. Satell. Jupit. 782–806 (1982)

  35. L.J. Lanzerotti, W.L. Brown, J.M. Poate, W.M. Augustyniak, On the contribution of water products from Galilean satellites to the Jovian magnetosphere. Geophys. Res. Lett. 5(2), 155–158 (1978)

    ADS  Google Scholar 

  36. F. Leblanc, A.V. Oza, L. Leclercq, C. Schmidt, T. Cassidy, R. Modolo, J.-Y. Chaufray, R.E. Johnson, On the orbital variability of Ganymede’s atmosphere. Icarus 293, 185–198 (2017)

    ADS  Google Scholar 

  37. L. Liuzzo, A.R. Poppe, P. Addison, S. Simon, Q. Nénon, C. Paranicas, Energetic magnetospheric particle fluxes onto Callisto’s atmosphere. J. Geophys. Res. Space Phys. e2022JA030915

  38. J.M. Moore et al., Mass movement and landform degradation on the icy Galilean satellites: results of the Galileo nominal mission. Icarus 140(2), 294–312 (1999)

    ADS  Google Scholar 

  39. E.G. Nerney, F. Bagenal, A.J. Steffl, Io plasma torus ion composition: Voyager, Galileo, and Cassini. J. Geophys. Res. (Space Phys.) 122(1), 727–744 (2017)

    ADS  Google Scholar 

  40. F.M. Neubauer, The sub-Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere. J. Geophys. Res. Planets 103(E9), 19843–19866 (1998)

    ADS  Google Scholar 

  41. C. Paranicas, B.H. Mauk, P. Kollmann, G. Clark, D.K. Haggerty, J. Westlake, L. Liuzzo, A. Masters, T.A. Cassidy, F. Bagenal, S. Bolton, Energetic charged particle fluxes relevant to Ganymede’s polar region. Geophys. Res. Lett. e2022GL098077 (2022)

  42. C.T. Reimann, J.W. Boring, R.E. Johnson, J.W. Garrett, K.R. Farmer, W.L. Brown, K.J. Marcantonio, W.M. Augustyniak, Ion-induced molecular ejection from D2O ice. Surf. Sci. 147(1), 227–240 (1984)

    ADS  Google Scholar 

  43. L. Roth, A stable H2O atmosphere on Europa’s trailing hemisphere from HST images. Geophys. Res. Lett. 48, e2021GL094289 (2021)

    ADS  Google Scholar 

  44. L. Roth, N. Ivchenko, G.R. Gladstone, J. Saur, D. Grodent, B. Bonfond, P.M. Molyneux, K.D. Retherford, A sublimated water atmosphere on Ganymede detected from Hubble Space Telescope observations. Nat. Astron. 5, 1043–1051 (2021)

    ADS  Google Scholar 

  45. L. Roth, G. Marchesini, T.M. Becker, H.J. Hoeijmakers, P.M. Molyneux, K.D. Retherford, J. Saur, S.R. Carberry Mogan, J.R. Szalay, Probing Ganymede’s atmosphere with HST Ly-alpha images in transit of Jupiter. Planet. Sci. J. 4(1), 12 (2023)

    Google Scholar 

  46. L. Roth, K.D. Retherford, N. Ivchenko, N. Schlatter, D.F. Strobel, T.M. Becker, C. Grava, Detection of a hydrogen corona in HST Ly\(\alpha \) images of Europa in transit of Jupiter. Astron. J. 153(2), 67 (2017)

    ADS  Google Scholar 

  47. L. Roth, J. Saur, K.D. Retherford, D.F. Strobel, P.D. Feldman, M.A. McGrath, J.R. Spencer, A. Blöcker, N. Ivchenko, Europa’s far ultraviolet oxygen aurora from a comprehensive set of HST observations. J. Geophys. Res. Space Phys. 121(3), 2143–2170 (2016)

    ADS  Google Scholar 

  48. M. Rubin, X. Jia, K. Altwegg, M.R. Combi, L.K.S. Daldorff, T.I. Gombosi, K. Khurana, M.G. Kivelson, V.M. Tenishev, G. Tóth, B. van der Holst, P. Wurz, Self-consistent multifluid MHD simulations of Europa’s exospheric interaction with Jupiter’s magnetosphere. J. Geophys. Res. Space Phys. 120(5), 3503–3524 (2015)

    ADS  Google Scholar 

  49. J. Saur, F.M. Neubauer, J.E.P. Connerney, P. Zarka, M.G. Kivelson, Plasma interaction of Io with its plasma torus. Jupit.: Planet Satell. Magnetos. 1, 537–560 (2004)

    ADS  Google Scholar 

  50. J. Saur, D.F. Strobel, F.M. Neubauer, Interaction of the Jovian magnetosphere with Europa: constraints on the neutral atmosphere. J. Geophys. Res.: Planets 103(E9), 19947–19962 (1998)

    ADS  Google Scholar 

  51. E.J. Smith, L. Davis Jr., D.E. Jones, P.J. Coleman Jr., D.S. Colburn, P. Dyal, C.P. Sonett, A.M.A. Frandsen, The planetary magnetic field and magnetosphere of Jupiter: Pioneer 10. J. Geophys. Res. 79(25), 3501–3513 (1974)

    ADS  Google Scholar 

  52. W.H. Smyth, M.L. Marconi, Europa’s atmosphere, gas tori, and magnetospheric implications. Icarus 181(2), 510–526 (2006)

    ADS  Google Scholar 

  53. J.R. Spencer, Thermal segregation of water ice on the Galilean satellites. Icarus 69(2), 297–313 (1987)

    ADS  Google Scholar 

  54. J.R. Spencer, P.R. Maloney, Mobility of water ice on Callisto: evidence and implications. Geophys. Res. Lett. 11(12), 1223–1226 (1984)

    ADS  Google Scholar 

  55. D.F. Strobel, J. Saur, P.D. Feldman, M.A. McGrath, Hubble space telescope space telescope imaging spectrograph search for an atmosphere on Callisto: a Jovian unipolar inductor. Astrophys. J. Lett. 581(1), L51 (2002)

    ADS  Google Scholar 

  56. J.R. Szalay, H.T. Smith, E.J. Zirnstein, D.J. McComas, L.J. Begley, F. Bagenal, P.A. Delamere, R.J. Wilson, P.W. Valek, A.R. Poppe, Q. Nénon, F. Allegrini, R.W. Ebert, S.J. Bolton, Water-group pickup ions from Europa-genic neutrals orbiting Jupiter. Geophys. Res. Lett. 1, e2022GL098111 (2022)

    Google Scholar 

  57. J.H. Trainor, F.B. McDonald, B.J. Teegarden, W.R. Webber, E.C. Roelof, Energetic particles in the Jovian magnetosphere. J. Geophys. Res. 79(25), 3600–3613 (1974)

    ADS  Google Scholar 

  58. A. Vorburger, S. Fatemi, A. Galli, L. Liuzzo, A.R. Poppe, P. Wurz, 3D Monte-Carlo simulation of Ganymede’s water exosphere. Icarus 375, 114810 (2022)

    Google Scholar 

  59. J.H. Wolfe, H. Collard, J. Mihalov, D. Intriligator, Preliminary Pioneer 10 encounter results from the Ames Research Center plasma analyzer experiment. Science 183(4122), 303–305 (1974)

    ADS  Google Scholar 

  60. Y.L. Yung, M.B. McElroy, Stability of an oxygen atmosphere on Ganymede. Icarus 30(1), 97–103 (1977)

    ADS  Google Scholar 

Download references

Acknowledgements

S.R.C.M. acknowledges the support provided by NASA through the Solar System Workings Grant 80NSSC21K0152, A.V. acknowledges the support provided by the Swiss National Science Foundation, and L.R. was supported by the Swedish National Space Agency through Grant 2021-00,153 and by the Swedish Research Council through Grant 2017-04897.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Shane R. Carberry Mogan.

Additional information

Guest editors: Jose L Lopez, Michael Brunger, Holger Kersten.

Appendices

Appendix

A DM formula

The “modified” DM formula [20] derives the total energy-dependent electron-impact ionization cross section, \(\sigma (E)\), of an atom as:

$$\begin{aligned} \sigma (E) = \sum _{n,l} \pi g_{n,l} r_{n,l}^2 \xi _{n,l} b_{n,l}^{(q)}(u) \left[ \ln (c_{n,l} u) / u \right] . \end{aligned}$$
(2)
Table 6 Various terms in the energy-dependent function \(b_{n,l}^{(q)}(u) \left[ \ln (c_{n,l} u) / u \right] \) (Eqs. 23) for electron impact ionization cross section of H atoms
Table 7 Various terms in the energy-dependent function \(b_{n,l}^{(q)}(u) \left[ \ln (c_{n,l} u) / u \right] \) (Eqs. 23) for electron impact ionization cross section of O atoms

Here \(r_{n,l}\) is the radius of maximum radial density of and \(\xi _{n,l}\) is the number of electrons in the atomic subshell characterized by quantum numbers n and l; \(g_{n,l}\) is a weighting factor originally determined from a fitting procedure; \(u = E / E_{n,l}\), where E is the incident energy of the electrons and \(E_{n,l}\) is the ionization energy in the (n, l) subshell; and \(c_{n,l}\) is a constant determined from measured cross sections for various values of n and l. Tables 4 and 5 list values for the various terms in Eq. 2 for H and O atoms, respectively. The energy-dependent function \(b_{n,l}^{(q)}(u) \left[ \ln (c_{n,l} u) / u \right] \) allows the DM formula to be applied up to keV-energy regimes, with \(b_{n,l}^{(q)}(u)\) written as the following:

$$\begin{aligned} b_{n,l}^{(q)}(u) = \frac{A_1 - A_2}{1 + (u / A_3)^p} + A_2, \end{aligned}$$
(3)

where \(A_{1-3}\) and p are constants determined from measured cross sections for various values of n and l, and the superscript (q) refers to the number of electrons in the (n, l) subshell. Tables 6 and 7 list values for the various terms in the energy-dependent function \(b_{n,l}^{(q)}(u) \left[ \ln (c_{n,l} u) / u \right] \) for H and O atoms, respectively. We refer the reader to the review by [18] for how \(\sigma (E)\) of atoms are used to calculate \(\sigma (E)\) of molecules composed of those atoms; i.e., how to estimate \(\sigma (E)\) of H\(_2\), O\(_2\), and H\(_2\)O from \(\sigma (E)\) of H and O.

B Photoionization rates

Table 8 lists the range of photoionization rates determined by [26] for a “quiet” Sun (i.e., solar minimum)—“active” Sun (i.e., solar maximum), which are then scaled to the average Jovian system’s distance from the Sun, 5.2 AU, ignoring any possible absorption with depth into the atmosphere.

Table 8 Photoionization rates at 5.2 AU

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carberry Mogan, S.R., Johnson, R.E., Vorburger, A. et al. Electron impact ionization in the icy Galilean satellites’ atmospheres. Eur. Phys. J. D 77, 26 (2023). https://doi.org/10.1140/epjd/s10053-023-00606-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00606-8

Navigation