Skip to main content
Log in

Formation of molecular Rydberg states in an intense laser field

  • Regular Article – Molecular Physics and Chemical Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this paper, we experimentally study the decay constants and the Rydberg states population of molecular ions generated in a strong laser field by using a time-of-flight mass spectrometer. The lifetime of molecular ions is determined by tuning the initial velocity of the aimed ions into the free flight zone of the mass-spectrometer, which is a facile and straightforward method. The lifetime of CO\(^{+}\) is 13.91±5.31 \(\mu \)s, while that of CO\(^{2+}\) is 6.68±1.41 \(\mu \)s. The lifetime of H\(_{2}^{+}\), H\(_{2}\)O\(^{+}\), and O\(_{2}^{+}\) are 2.93±1.25 \(\mu \)s, 4.01±0.52 \(\mu \)s, and 5.22±1.93 \(\mu \)s. Part of the molecular ions are populated in the Rydberg states, and the distribution of their populations in the Rydberg states is achieved via precise calibration of the dc field of the acceleration region.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited [Authors’ comment: Data is available from the corresponding author on reasonable request.]

References

  1. J. Lemaire, F. Mouchère, M. Heninger, S. Fenistein, R. Marx, G. Mauclaire, Radiative lifetime of CO\(^+\) (x\(^{2}\sum ^{+}\), v) ions. Int. J. Mass Spectr. Ion Processes 172(1–2), 129–135 (1998)

  2. C.M. Marian, M. Larsson, B.J. Olsson, P. Sigray, Theoretical and experimental studies of radiative lifetimes of excited electronic states in CO\(^+\). Chem. Phys. 130(1–3), 361–370 (1989)

    Article  Google Scholar 

  3. G.R. Möhlmann, F.J. De Heer, Measurements of the radiative lifetimes of the vibrational CO\(^+(A^2\)\(\Pi _i\)) states. Chem. Phys. Lett. 43(1), 170–174 (1976)

  4. V.E. Bondybey, T.A. Miller, Radiative and radiationless vibronic deactivation rates in selectively excited CO\(^+\). J Chem. Phys. 69(8), 3597–3602 (1978)

    Article  ADS  Google Scholar 

  5. F. Arqueros, J. Campos, Lifetime of vibrational levels of the A\(^2\Pi \) and B\(^2\sum ^+\) states of CO\(^+\). J. Chem. Phys. 74(11), 6092–6095 (1981)

    Article  ADS  Google Scholar 

  6. J. Desesquelles, M. Dufay, M.C. Poulizac, Lifetime measurement of molecular states with an accelerated ion beam. Phys. Lett. A 27(2), 96–97 (1968)

    Article  ADS  Google Scholar 

  7. R. Anderson, R. Sutherland, N. Frey, Radiative lifetimes of the A\(^2\Pi \) state of CO\(^+\). JOSA 62(10), 1127–1130 (1972)

    Article  ADS  Google Scholar 

  8. T.J. Scholl, S.D. Rosner, R.A. Holt, B\(^2 \sum ^+\) state lifetime in CO\(^+\). Canad. J. Phys. 76(1), 39–46 (1998)

    ADS  Google Scholar 

  9. G.M. Lawrence, Lifetimes and transition probabilities in CO\(^+\). J. Quantit. Spectr. Rad. Transf 5(2), 359–367 (1965)

    Article  ADS  Google Scholar 

  10. L.W. Dotchin, E.L. Chupp, D.J. Pegg, Radiative lifetimes and pressure dependence of the relaxation rates of some vibronic levels in N\(_2^+\), N\(_2\), CO\(^+\), and CO. J. Chem. Phys. 59(8), 3960–3967 (1973)

    Article  ADS  Google Scholar 

  11. R.G. Fowler, P.R. Skwerski, R.A. Anderson, G.E. Copeland, T.M. Holzberlein, Radiative lifetime of the B\(^2 \sum ^+\) state of CO\(^+\). J. Chem. Phys. 50(10), 4133–4135 (1969)

    Article  ADS  Google Scholar 

  12. M.N. Dumont, F. Remy, Experimental determination of the radiative lifetime of the 0, 1, 2, 3 vibrational levels of the B\(^2\sum ^{+} \) state in CO\(^{+}\). J Quantit Spectros. Radiat. Transfer 22(2), 209–211 (1979)

    Article  ADS  Google Scholar 

  13. G. Dujardin, L. Hellner, M. Hamdan, A.G. Brenton, B.J. Olsson, M.J. Besnard-Ramage, Quasibound electronic states of CO\(^{2+}\). J. Phys. B: Atomic, Mol. Opt. Phys. 23(7), 1165 (1990)

    Article  ADS  Google Scholar 

  14. C.P. Safvan, D. Mathur, On the determination of the lifetime of metastable doubly charged molecules by ion translational energy spectrometry: CO\(^{2+}\). J. Phys. B: Atomic, Mol. Opt. Phys. 26(22), L793 (1993)

    Article  ADS  Google Scholar 

  15. T.A. Field, J.H.D. Eland, Lifetimes of metastable molecular doubly charged ions. Chem. Phys. Lett. 211(4–5), 436–442 (1993)

    Article  ADS  Google Scholar 

  16. J.P. Bouhnik, I. Gertner, B. Rosner, Z. Amitay, O. Heber, D. Zajfman, E.Y. Sidky, I. Ben-Itzhak, Measurements of the mean lifetime and kinetic-energy release of metastable CO\(^{2+}\). Phys. Rev. A 63(3), 032509 (2001)

    Article  ADS  Google Scholar 

  17. A.S. Newton, A.F. Sciamanna, Metastable dissociation of the doubly charged carbon monoxide ion. J. Chem. Phys. 53(1), 132–136 (1970)

    Article  ADS  Google Scholar 

  18. R.G. Hirsch, R.J. Van Brunt, W.D. Whitehead, Time-of-flight mass spectrometric technique for measuring dissociative life-times of metastable molecular ions-CO\(^{2+}\). Int. J. Mass. Spectr. Ion Phys. 17(3), 335–349 (1975)

    Article  ADS  Google Scholar 

  19. M. Lundqvist, P. Baltzer, D. Edvardsson, L. Karlsson, B. Wannberg, Novel time of flight instrument for doppler free kinetic energy release spectroscopy. Phys. Rev. Lett. 75(6), 1058 (1995)

    Article  ADS  Google Scholar 

  20. F. Penent, R.I. Hall, R. Panajotović, J.H.D. Eland, G. Chaplier, P. Lablanquie, New method for the study of dissociation dynamics of state-selected doubly charged ions: application to CO\(^{2+}\). Phys. Rev. Lett. 81, 3619–3622 (1998)

    Article  ADS  Google Scholar 

  21. L.H. Andersen, J.H. Posthumus, O. Vahtras, H. Ågren, N. Elander, A. Nunez, A. Scrinzi, M. Natiello, M. Larsson, Very slow spontaneous dissociation of CO\(^{2+}\) observed by means of a heavy ion storage ring. Phys Rev. Lett. 71(12), 1812 (1993)

    Article  ADS  Google Scholar 

  22. D. Mathur, L.H. Andersen, P. Hvelplund, D. Kella, C.P. Safvan, Long-lived, doubly charged diatomic and triatomic molecular ions. J. Phys. B: Atomic, Mol. Opt. Phys. 28(15), 3415 (1995)

    Article  ADS  Google Scholar 

  23. J. Zhang, Y. Yang, Z. Li, H. Sun, S. Zhang, Z. Sun, Channel-resolved multiorbital double ionization of molecular Cl\(_2\) in an intense femtosecond laser field. Phys. Rev. A 98(4), 043402 (2018)

    Article  ADS  Google Scholar 

  24. W. Zhang, Z. Li, L. Peifen, X. Gong, Q. Song, Q. Ji, K. Lin, J. Ma, F. He, H. Zeng et al., Photon energy deposition in strong-field single ionization of multielectron molecules. Phys Rev. Lett. 117(10), 103002 (2016)

    Article  ADS  Google Scholar 

  25. X. Sun, M. Li, Y. Shao, M.M. Liu, X. Xie, Y. Deng, W. Chengyin, Q. Gong, Y. Liu, Vibrationally resolved electron-nuclear energy sharing in above-threshold multiphoton dissociation of CO. Phys. Rev. A 94(1), 013425 (2016)

    Article  ADS  Google Scholar 

  26. T. Nubbemeyer, K. Gorling, A. Saenz, U. Eichmann, W. Sandner, Strong-field tunneling without ionization. Phys. Rev. Lett. 101(23), 233001 (2008)

    Article  ADS  Google Scholar 

  27. H. Zimmermann, J. Buller, S. Eilzer, U. Eichmann, Strong-field excitation of helium: bound state distribution and spin effects. Phys Rev. Lett. 114(12), 123003 (2015)

    Article  ADS  Google Scholar 

  28. H. Lv, W. Zuo, L. Zhao, X. Haifeng, M. Jin, D. Ding, H. Shilin, J. Chen, Comparative study on atomic and molecular rydberg-state excitation in strong infrared laser fields. Phys Rev A 93(3), 033415 (2016)

    Article  ADS  Google Scholar 

  29. K.N. Shomsky, Z.S. Smith, S.L. Haan, Frustrated nonsequential double ionization: a classical model. Phys Rev A 79(6), 061402 (2009)

    Article  ADS  Google Scholar 

  30. M.P. De Boer, H.G. Muller, Observation of large populations in excited states after short-pulse multiphoton ionization. Phys Rev. Lett. 68(18), 2747 (1992)

    Article  ADS  Google Scholar 

  31. A. Talebpour, Y. Liang, S.L. Chin, Population trapping in the CO molecule. J. Phys. B: Atomic, Mol. Opt. Phys. 29(15), 3435 (1996)

    Article  ADS  Google Scholar 

  32. S. Larimian, S. Erattupuzha, A. Baltuška, M. Kitzler-Zeiler, X. Xie, Frustrated double ionization of argon atoms in strong laser fields. Phys. Rev. Res. 2, 013021 (2020)

    Article  Google Scholar 

  33. S. Larimian, S. Erattupuzha, C. Lemell, S. Yoshida, S. Nagele, R. Maurer, A. Baltuška, J. Burgdörfer, M. Kitzler, X. Xie et al., Coincidence spectroscopy of high-lying rydberg states produced in strong laser fields. Phys. Rev. A 94(3), 033401 (2016)

    Article  ADS  Google Scholar 

  34. T.F. Gallagher, W.E. Cooke, Interactions of blackbody radiation with atoms. Phys. Rev. Lett. 42(13), 835 (1979)

    Article  ADS  Google Scholar 

  35. B.L. Schram, A.J.H. Boerboom, W. Kleine, J. Kistemaker, Amplification factors of a particle multiplier for multiply charged noble gas ions. Physica 32(4), 749–761 (1966)

    Article  ADS  Google Scholar 

  36. C. Guo, M. Li, J.P. Nibarger, G.N. Gibson, Nonsequential double ionization of molecular fragments. Phys. Rev. A 61(3), 033413 (2000)

    Article  ADS  Google Scholar 

  37. C. Cornaggia, J. Lavancier, D. Normand, J. Morellec, P. Agostini, J.P. Chambaret, A. Antonetti, Multielectron dissociative ionization of diatomic molecules in an intense femtosecond laser field. Phys. Rev. A 44(7), 4499 (1991)

    Article  ADS  Google Scholar 

  38. B. Wannberg, D. Nordfors, K.L. Tan, L. Karlsson, L. Mattsson, High resolution angle resolved photoelectron spectrum of CO excited with polarized resonance radiation. J. Elect. Spectr. Relat. Phen. 47, 147–166 (1988)

    Article  Google Scholar 

  39. K. Okada, S. Iwata, Accurate potential energy and transition dipole moment curves for several electronic states of CO\(^+\). J. Chem. Phys. 112(4), 1804–1808 (2000)

    Article  ADS  Google Scholar 

  40. T. Šedivcová, P.R. Žánská, V. Špirko, J. Fišer. Computed lifetimes of metastable states of CO\(^{2+}\). J. Chem. Phys. 124(21), 214303 (2006)

  41. H. Lefebvre. Brion and RW field. Perturbations in the Spectra of Diatomic Molecules, p 87–96, 1986

  42. J. McKenna, A.M. Sayler, F. Anis, N.G. Johnson, B. Gaire, U. Lev, M.A. Zohrabi, K.D. Carnes, B.D. Esry, I. Ben-Itzhak, Vibrationally cold CO\(^{2+}\) in intense ultrashort laser pulses. Phys Rev. A 81(6), 061401 (2010)

    Article  ADS  Google Scholar 

  43. Q. Li, X.M. Tong, T. Morishita, H. Wei, C.D. Lin, Fine structures in the intensity dependence of excitation and ionization probabilities of hydrogen atoms in intense 800-nm laser pulses. Phys Rev A 89(2), 023421 (2014)

  44. R.R. Freeman, P.H. Bucksbaum, H. Milchberg, S. Darack, D. Schumacher, M.E. Geusic, Above-threshold ionization with subpicosecond laser pulses. Phys Rev Lett 59(10), 1092 (1987)

  45. S. Chen, J. Chen, G.G. Paulus, H.P. Kang, Strong-field frustrated double ionization of argon atoms. Phys Rev A 102(2), 023103 (2020)

    Article  ADS  Google Scholar 

  46. S. Larimian, S. Erattupuzha, A. Baltuška, M. Kitzler-Zeiler, X. Xie et al., Frustrated double ionization of argon atoms in strong laser fields. Phys Rev Res 2(1), 013021 (2020)

    Article  Google Scholar 

  47. J. McKenna, A.M. Sayler, B. Gaire, N.G. Kling, B.D. Esry, K.D. Carnes, I. Ben-Itzhak, Frustrated tunnelling ionization during strong-field fragmentation of D\(_3^+\). New J Phys 14(10), 103029 (2012)

    Article  Google Scholar 

  48. T. Nubbemeyer, U. Eichmann, W. Sandner, Excited neutral atomic fragments in the strong-field dissociation of N\(_2\) molecules. J Phys B: Atomic, Mol Opt Phys 42(13), 134010 (2009)

    Article  ADS  Google Scholar 

  49. H. Lv, J.F. Zhang, W.L. Zuo, X. Hai-Feng, M.X. Jin, D.J. Ding, Rydberg excitation of neutral nitric oxide molecules in strong UV and near-IR laser fields. Chinese Phys B 24(6), 063303 (2015)

    Article  ADS  Google Scholar 

  50. M. Zhao, Y.L. Wang, W. Quan, X.Y. Lai, H.P. Liu, Lu. JianDuo, XiaoJun Liu, High-lying rydberg atoms surviving intense laser fields. Phys. Rev. A 104(4), 043115 (2021)

    Article  ADS  Google Scholar 

  51. S. Larimian, C. Lemell, V. Stummer, J.W. Geng, S. Roither, D. Kartashov, L. Zhang, M.X. Wang, Q. Gong, L.Y. Peng et al., Localizing high-lying rydberg wave packets with two-color laser fields. Phys. Rev. A 96(2), 021403 (2017)

    Article  ADS  Google Scholar 

  52. X. SongPo, M.Q. Liu, H. ShiLin, Z. Shu, W. Quan, Y. ZhiLei Xiao, M.Z.W. Zhou, M. Zhao, R.P. Sun et al., Observation of a transition in the dynamics of strong-field atomic excitation. Phys. Rev. A 102(4), 043104 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant Nos. U1932133, 11905089 and 12027809).

Author information

Authors and Affiliations

Authors

Contributions

GQS performed all the experiments, analyzed the data, and wrote the manuscript. YLX, JTL, and SHS contributed to the scientific discussions and corrections. ZYL and BTH supervised GQS. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Zuoye Liu.

Ethics declarations

Conflict of interest

The authors declare that they no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, G., Xiang, Y., Lei, J. et al. Formation of molecular Rydberg states in an intense laser field. Eur. Phys. J. D 77, 20 (2023). https://doi.org/10.1140/epjd/s10053-023-00593-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00593-w

Navigation