Skip to main content
Log in

R-matrix calculation electron collisions with HCN and HNC molecules

  • Regular Article – Atomic and Molecular Collisions
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Low energy electron collisions with hydrogen cyanide and hydrogen isocyanide molecules are studied using the R-matrix method. Scattering calculations are carried out using static exchange (SE), static exchange plus polarization (SEP) and close-coupling (CC) models. Electronic excitation cross sections are reported for HCN in our best 24-state close-coupling model with 17 virtual orbitals and for HNC using 25-state close-coupling model in which 18 virtual orbitals are included to account for polarization and correlation effects. These effects are necessary to obtain accurate results and also responsible for shift in the positions of \(^2\Pi \) shape resonance (in both HCN and HNC) to lower energy compared to previous studies. These resonances are dissociative in nature. Complex resonance potential energy curves are produced for HCN and found to give narrower widths than previous theoretical results. Ionization cross section computed using Binary Encounter Bethe (BEB) method. Differential cross section (DCS) at 2, 4, 6, 8 and 10 eV and momentum transfer cross sections (MTCS) are also reported using 2-state CC model for HCN. The results obtained are useful for various research fields including plasma modelling and astrophysics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P.B. Rimmer, S. Rugheimer, Hydrogen cyanide in nitrogen-rich atmospheres of rocky exoplanets. Icarus 329, 124–131 (2019)

    Article  ADS  Google Scholar 

  2. P. Rimmer, M. Ferus, I. Waldmann, A. Knížek, D. Kalvaitis, O. Ivanek, P. Kubelík, S. Yurchenko, T. Burian, J. Dostál et al., Identifiable acetylene features predicted for young earth-like exoplanets with reducing atmospheres undergoing heavy bombardment. Astrophys J 888(1), 21 (2019)

    Article  ADS  Google Scholar 

  3. M.R. Swain, R. Estrela, G.M. Roudier, C. Sotin, P.B. Rimmer, A. Valio, R. West, K. Pearson, N. Huber-Feely, R.T. Zellem, Detection of an atmosphere on a rocky exoplanet. Astron. J. 161(5), 213 (2021)

    Article  ADS  Google Scholar 

  4. P. Bergman, M. Lerner, A. Olofsson, E. Wirström, J.H. Black, P. Bjerkeli, R. Parra, K. Torstensson, Emission from hcn and ch3oh in comets-onsala 20-m observations and radiative transfer modelling. Astronom. Astrophys. 660, 118 (2022)

    Article  ADS  Google Scholar 

  5. RP.R. Roelfsema, H. Shibai, L. Armus, D. Arrazola, M. Audard, M.D. Audley, C.M. Bradford, I. Charles, P. Dieleman, Y. Doi, L. Duband, M. Eggens, J. Evers, I. Funaki, J.R. Gao, M. Giard, A. di Giorgio L.M. González Fernández, M. Griffin, F.P. Helmich, R. Hijmering, R. Huisman, D. Ishihara, N. Isobe, B. Jackson, H. Jacobs, W. Jellema, I. Kamp, H. Kaneda, M. Kawada, F. Kemper, F. Kerschbaum, P. Khosropanah, K. Kohno, P.P. Kooijman, O. Krause, J. van der Kuur, J. Kwon, W.M. Laauwen, G. de Lange, B. Larsson, D. van Loon, S.C. Madden, H. Matsuhara, F. Najarro, T. Nakagawa, D. Naylor, H. Ogawa, T. Onaka, S. Oyabu, A. Poglitsch, V. Reveret, L. Rodriguez, L. Spinoglio, I. Sakon, Y. Sato, K. Shinozaki, R. Shipman, H. Sugita, T. Suzuki, F.F.S. van der Tak, J. Torres Redondo, T. Wada, S.Y. Wang, C.K. Wafelbakker, H. van Weers, S. Withington, B. Vandenbussche, T. Yamada, I. Yamamura, SPICA–a large cryogenic infrared space telescope: unveiling the obscured universe. Publ. Astron. Soc. Aust. (2018) https://doi.org/10.48550/arXiv.1803.10438

  6. B.R. Brandl, Bernhard R, O, Absil, T. Agócs, N. Baccichet, T. Bertram, F. Bettonvil, R. van Boekel, L. Burtscher, E. van Dishoeck, M. Feldt, et al., Status of the mid-IR ELT imager and spectrograph (METIS). Ground-based and Airborne Instrumentation for Astronomy VII. vol. 10702, pp. 582–596 (2018)

  7. G. S. Wright, David Wright, G. B. Goodson, G. H. Rieke, Gabby Aitink-Kroes, J. Amiaux, Ana Aricha-Yanguas, Ruymán Azzollini, Kimberly Banks, D. Barrado-Navascues, T. Belenguer-Davila, J. A. D. L. Bloemmart, Patrice Bouchet, B. R. Brandl, L. Colina, Örs Detre, Eva Diaz-Catala, Paul Eccleston, Scott D. Friedman, Macarena García-Marín, Manuel Güdel, Alistair Glasse, Adrian M. Glauser, T. P. Greene, Uli Groezinger, Tim Grundy, Peter Hastings, Th. Henning, Ralph Hofferbert, Faye Hunter, N. C. Jessen, K. Justtanont, Avinash R. Karnik, Mori A. Khorrami, Oliver Krause, Alvaro Labiano, P.-O. Lagage, Ulrich Langer, Dietrich Lemke, Tanya Lim, Jose Lorenzo-Alvarez, Emmanuel Mazy, Norman McGowan, M. E. Meixner, Nigel Morris, Jane E. Morrison, Friedrich Müller, H.-U. Nø rgaard-Nielson, Göran Olofsson, Brian O’Sullivan, J.-W. Pel, Konstantin Penanen, M. B. Petach, J. P. Pye, T. P. Ray, Etienne Renotte, Ian Renouf, M. E. Ressler, Piyal Samara-Ratna, Silvia Scheithauer, Analyn Schneider, Bryan Shaughnessy, Tim Stevenson, Kalyani Sukhatme, Bruce Swinyard, Jon Sykes, John Thatcher, Tuomo Tikkanen, E. F. van Dishoeck, C. Waelkens, Helen Walker, Martyn Wells, and Alex Zhender, The mid-infrared instrument for the james web space telescope, ii: Design and build. Publ. Astron. Soc. Pacific. 127(953), 595 (2015)

  8. F.F. van der Tak, F. Lique, A. Faure, J.H. Black, E.F. van Dishoeck, The leiden atomic and molecular database (lamda): current status, recent updates, and future plans. Atoms 8(2), 15 (2020)

    Article  ADS  Google Scholar 

  9. R.J. Barber, J.K. Strange, C. Hill, O.L. Polyansky, G.C. Mellau, S.N. Yurchenko, J. Tennyson, ExoMol line lists - III. An improved hot rotation-vibration line list for HCN and HNC. Mon. Not. R. Astron. Soc. 437, 1828–1835 (2014). https://doi.org/10.1093/mnras/stt2011

    Article  ADS  Google Scholar 

  10. P.F. Goldsmith, J. Kauffmann, Electron excitation of high dipole moment molecules re-examined. Astrophys J 841(1), 25 (2017)

    Article  ADS  Google Scholar 

  11. A. Zamir, T. Stein, Isomerization of hydrogen cyanide and hydrogen isocyanide in a cluster environment: quantum chemical study. J. Chem. Phys. 156(5), 054307 (2022)

    Article  ADS  Google Scholar 

  12. A. Jain, D. Norcross, Ab initio calculations of low-energy electron scattering by HNC molecules: dependence on internuclear distance in linear geometry. J. Chem. Phys. 84(2), 739–744 (1986)

    Article  ADS  Google Scholar 

  13. S. Chourou, A. Orel, Dissociative electron attachment to HNC and HNC. Phys. Rev. A 80(3), 032709 (2009)

    Article  ADS  Google Scholar 

  14. S. Chourou, A. Orel, Isotope effect in dissociative electron attachment to HNC. Phys. Rev. A 83(3), 032709 (2011)

    Article  ADS  Google Scholar 

  15. S. Chourou, A. Orel, Dissociative electron attachment to HNC, HCCH and HCCCH. J. Phys: Conf. Ser. 300(1), 012014 (2011). (IOP Publishing)

    Google Scholar 

  16. O. May, D. Kubala, M. Allan, Absolute cross sections for dissociative electron attachment to HCN and DCN. Phys. Rev. A 82(1), 010701 (2010)

    Article  ADS  Google Scholar 

  17. A. Sanz, M. Fuss, F. Blanco, F. Sebastianelli, F. Gianturco, G. García, Electron scattering cross sections from hcn over a broad energy range (0.1–10 000 ev): Influence of the permanent dipole moment on the scattering process. J. Chem. Phys. 137(12), 124103 (2012)

    Article  ADS  Google Scholar 

  18. S. Srivastava, H. Tanaka, A. Chutjian, Elastic scattering of intermediate energy electrons by hcn. J. Chem. Phys. 69(4), 1493–1497 (1978)

    Article  ADS  Google Scholar 

  19. A. Jain, D. Norcross, Ab initio calculations of low-energy electron scattering by HCN molecules. Phys. Rev. A 32(1), 134 (1985)

    Article  ADS  Google Scholar 

  20. A. Faure, H.N. Varambhia, T. Stoecklin, J. Tennyson, Electron-impact rotational and hyperfine excitation of HCN, HNC, DCN and DNC. Mon. Not. R. Astron. Soc. 382(2), 840–848 (2007)

    Article  ADS  Google Scholar 

  21. H.N. Varambhia, J. Tennyson, Electron collision with the HCN and HNC molecules using the r-matrix method. J. Phys. B: At. Mol. Opt. Phys. 40(6), 1211 (2007)

    Article  ADS  Google Scholar 

  22. J.M. Carr, P.G. Galiatsatos, J.D. Gorfinkiel, A.G. Harvey, M.A. Lysaght, D. Madden, Z. Mašín, M. Plummer, J. Tennyson, H.N. Varambhia, The ukrmol program suite. Eur. Phys. J. D 66, 58 (2012)

    Article  ADS  Google Scholar 

  23. J. Tennyson, D.B. Brown, J.J. Munro, I. Rozum, H.N. Varambhia, N. Vinci, Quantemol-N: an expert system for performing electron molecule collision calculations using the R-matrix method. J. Phys: Conf. Ser. 86, 012001 (2007)

    Google Scholar 

  24. B. Cooper, M. Tudorovskaya, S. Mohr, A. O’Hare, M. Hanicinec, A. Dzarasova, J.D. Gorfinkiel, J. Benda, Z. Mašín, A.F. Al-Refaie et al., Quantemol electron collisions (qec): an enhanced expert system for performing electron molecule collision calculations using the r-matrix method. Atoms 7(4), 97 (2019)

    Article  ADS  Google Scholar 

  25. Z. Mašín, J. Benda, J.D. Gorfinkiel, A.G. Harvey, J. Tennyson, Ukrmol+: A suite for modelling electronic processes in molecules interacting with electrons, positrons and photons using the r-matrix method. Comput. Phys. Commun. 249, 107092 (2020)

    Article  Google Scholar 

  26. H.-J. Werner, P.J. Knowles, R. Lindh, F.R. Manby, M. Schütz, P. Celani, W. Györffy, D. Kats, T. Korona, R. Lindh et al. Molpro, a package of ab initio programs. http://www.molpro.net Version 2009.1

  27. P.G. Burke, R-matrix theory of atomic collisions: Application to atomic, molecular and optical processes (2011)

  28. J. Tennyson, Electron-molecule collision calculations using the r-matrix method. Phys. Rep. 491(2–3), 29–76 (2010)

    Article  ADS  Google Scholar 

  29. D. Gupta, H. Choi, D.-C. Kwon, H. Su, M.-Y. Song, J.-S. Yoon, J. Tennyson, Low-energy electron scattering from c-c4f8. Atoms 10(2), 63 (2022)

    Article  ADS  Google Scholar 

  30. H. Su, X. Cheng, B. Cooper, J. Tennyson, H. Zhang, Electron-impact high-lying n 2- resonant states. Phys. Rev. A 105(6), 062824 (2022)

    Article  ADS  Google Scholar 

  31. M.K. Nayak, R.K. Chaudhuri, S. Krishnamachari, Theoretical study on the excited states of hcn. J. Chem. Phys. 122(18), 184323 (2005)

    Article  ADS  Google Scholar 

  32. G. Herzberg, Electronic spectra and electronic structure of polyatomic molecules vol. 3 (1966)

  33. S. Krishnamachari, R. Venkatasubramanian, Electronic absorption spectra of hnc and dnc. Spectrosc. Lett. 19(1), 55–60 (1986)

    Article  ADS  Google Scholar 

  34. Nist: Triatomic spectral database. https://physics.nist.gov/cgi-bin/MolSpec/triperiodic.pl

  35. J. Tennyson, R-matrix calculation of Rydberg states of CO. J. Phys. B: At. Mol. Opt. Phys. 29, 6185–6201 (1996)

    Article  ADS  Google Scholar 

  36. P. Burrow, A. Howard, A. Johnston, K. Jordan, Temporary anion states of hydrogen cyanide, methyl cyanide, and methylene dicyanide, selected cyanoethylenes, benzonitrile, and tetracyanoquinodimethane. J. Phys. Chem. 96(19), 7570–7578 (1992)

    Article  Google Scholar 

  37. J. Tennyson, C.J. Noble, Reson-a program for the detection and fitting of breit-wigner resonances. Comput. Phys. Commun. 33(4), 421–424 (1984)

    Article  ADS  Google Scholar 

  38. M.M. Fujimoto, W.J. Brigg, J. Tennyson, R-matrix calculations of differential and integral cross sections for low-energy electron collisions with ethanol. Eur. Phys. J. D 66, 204 (2012)

    Article  ADS  Google Scholar 

  39. Y.K. Kim, M.E. Rudd, Binary-encounter-dipole model for electron impact ionisation. Phys. Rev. A 50, 3954 (1994)

    Article  ADS  Google Scholar 

  40. S.H. Pandya, F.A. Shelat, K. Joshipura, B.G. Vaishnav, Electron ionization of exotic molecular targets cn, c2n2, hcn, hnc and bf-theoretical cross sections. Int. J. Mass Spectrom. 323, 28–33 (2012)

    Article  Google Scholar 

  41. Y. Thakar, R. Bhavsar, M. Swadia, M. Vinodkumar, N. Mason, C. Limbachiya, Electron interactions with astro chemical compounds. Planet. Space Sci. 168, 95–103 (2019)

    Article  ADS  Google Scholar 

  42. V. Graves, B. Cooper, J. Tennyson, The efficient calculation of electron impact ionization cross sections with effective core potential. J. Chem. Phys. 154, 114104. DOI https://doi.org/10.1063/5.0039465 (2021)

  43. G.M. Schwenzer, H.F. Schaefer III, C.F. Bender, Excited electronic states of HNC, hydrogen isocyanide. J. Chem. Phys. 63(1):569–572

Download references

Acknowledgements

We thank Su He for help setting up the calculations. This work was supported by ’The Royal Society London, UK’ under International Exchange Scheme (ref: IES\(\backslash \) R3 \(\backslash \)193159 International Exchanges 2019 Round 3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasmeet Singh.

Ethics declarations

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment:. The data generated in this work are given in the paper. Numerical values for data given graphically will be provided upon reasonable requests to the authors.

Author Contribution Statement

JS performed the calculations and made the original draft of the manuscript; JT advised on the calculations and edited the manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J., Tennyson, J. R-matrix calculation electron collisions with HCN and HNC molecules. Eur. Phys. J. D 76, 242 (2022). https://doi.org/10.1140/epjd/s10053-022-00575-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00575-4

Navigation