Skip to main content
Log in

Long timescale behavior of large self-modulation of electromagnetic wave caused by vacuum nonlinearity

  • Regular Article – Nonlinear Dynamics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The vacuum is expected to exhibit electromagnetic nonlinearity via virtual electron–positron pairs. An electromagnetic wave is modulated. The self-modulation has been believed to be vanishingly small. However, a large self-modulation can appear in a long timescale, even though the intensity of electromagnetic wave is not extremely strong. To demonstrate this assertion, we theoretically consider standing electromagnetic waves with modest intensity confined in a two-dimensional rectangular cavity. We first calculate in a short timescale by applying a perturbative linear approximation. We show a secular term. Then, beyond the linear approximation, we derive differential equations for slowly varying amplitude and phase in a long timescale. A large self-modulation of polarization, phase, and energy ratio of each mode are obtained by solving the equations. In particular, the energy ratio is classified into three types. Namely, it keeps oscillating, eventually converges, or stays constant.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data, or the data will not be deposited. [Authors’ comment: The datasets generated during the current study are available from the corresponding author on reasonable request.]

References

  1. W. Heisenberg, H. Euler, Folgerungen aus der Diracschen theorie des positrons. Z. Phys. 98(11), 714–732 (1936). https://doi.org/10.1007/BF01343663

    Article  ADS  MATH  Google Scholar 

  2. J. Schwinger, On gauge invariance and vacuum polarization. Phys. Rev. 82, 664–679 (1951). https://doi.org/10.1103/PhysRev.82.664

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. M. Born, L. Infeld, R.H. Fowler, Foundations of the new field theory. Proc. R. Soc Lond. Ser. A Contain. Pap. Math. Phys. Charact. 144(852), 425–451 (1934). https://doi.org/10.1098/rspa.1934.0059

    Article  ADS  MATH  Google Scholar 

  4. E.H. Wichmann, N.M. Kroll, Vacuum polarization in a strong coulomb field. Phys. Rev. 101, 843–859 (1956). https://doi.org/10.1103/PhysRev.101.843

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. V.I. Denisov, N.V. Kravtsov, I.V. Krivchenkov, A nonlinear electrodynamical shift of spectral lines in the hydrogen atom and hydrogen-like ions. Opt. Spectrosc. 100(5), 641–644 (2006). https://doi.org/10.1134/S0030400X06050018

    Article  ADS  Google Scholar 

  6. H. Carley, M.K.-H. Kiessling, Nonperturbative calculation of Born–Infeld effects on the schrödinger spectrum of the hydrogen atom. Phys. Rev. Lett. 96, 030402 (2006). https://doi.org/10.1103/PhysRevLett.96.030402

    Article  ADS  Google Scholar 

  7. S.H. Mazharimousavi, M. Halilsoy, Ground state h-atom in Born–Infeld theory. Found. Phys. 42(4), 524–530 (2012). https://doi.org/10.1007/s10701-011-9623-7

    Article  ADS  MATH  Google Scholar 

  8. P.N. Akmansoy, L.G. Medeiros, Constraining Born–Infeld-like nonlinear electrodynamics using hydrogen’s ionization energy. Eur. Phys. J. C 78(2), 143 (2018). https://doi.org/10.1140/epjc/s10052-018-5643-1

    Article  ADS  Google Scholar 

  9. I.C.E. TURCU, F. Negoita, D. Jaroszynski, P. Mckenna, S. Balascuta, D. Ursescu, I. Dancus, M. Cernaianu, M.V. TATARU, P. Ghenuche, D. STUTMAN, A. BOIANU, M. RISCA, M. Toma, C. PETCU, G. ACBAS, S. Yoffe, A. Noble, B. Ersfeld, N. Zamfir, High field physics and QED experiments at ELI-NP. Roman. Rep. Phys. 68, 145 (2016)

    Google Scholar 

  10. A. Di Piazza, C. Müller, K.Z. Hatsagortsyan, C.H. Keitel, Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys. 84, 1177–1228 (2012). https://doi.org/10.1103/RevModPhys.84.1177

    Article  ADS  Google Scholar 

  11. B. King, T. Heinzl, Measuring vacuum polarization with high-power lasers. High Power Laser Sci. Eng. 4, 5 (2016). https://doi.org/10.1017/hpl.2016.1

    Article  Google Scholar 

  12. G.A. Mourou, T. Tajima, S.V. Bulanov, Optics in the relativistic regime. Rev. Mod. Phys. 78, 309–371 (2006). https://doi.org/10.1103/RevModPhys.78.309

    Article  ADS  Google Scholar 

  13. D. Eriksson, G. Brodin, M. Marklund, L. Stenflo, Possibility to measure elastic photon-photon scattering in vacuum. Phys. Rev. A 70, 013808 (2004). https://doi.org/10.1103/PhysRevA.70.013808

    Article  ADS  Google Scholar 

  14. G. Brodin, M. Marklund, L. Stenflo, Proposal for detection of QED vacuum nonlinearities in Maxwell’s equations by the use of waveguides. Phys. Rev. Lett. 87, 171801 (2001). https://doi.org/10.1103/PhysRevLett.87.171801

    Article  ADS  Google Scholar 

  15. S.N. Vlasov, Nonlinear self-similar beams of electromagnetic waves in vacuum. Radiophys. Quantum Electron. 58(7), 497–503 (2015). https://doi.org/10.1007/s11141-015-9622-1

    Article  ADS  Google Scholar 

  16. A. Arza, R.G. Elias, Parametric resonance in quantum electrodynamics vacuum birefringence. Phys. Rev. D 97, 096005 (2018). https://doi.org/10.1103/PhysRevD.97.096005

    Article  ADS  Google Scholar 

  17. G.L.J.A. Rikken, C. Rizzo, Magnetoelectric birefringences of the quantum vacuum. Phys. Rev. A 63, 012107 (2000). https://doi.org/10.1103/PhysRevA.63.012107

    Article  ADS  Google Scholar 

  18. K. Shibata, Intrinsic resonant enhancement of light by nonlinear vacuum. Eur. Phys. J. D 74(10), 215 (2020). https://doi.org/10.1140/epjd/e2020-10420-1

    Article  ADS  Google Scholar 

  19. K. Shibata, Electromagnetic resonance of nonlinear vacuum in one-dimensional cavity. Eur. Phys. J. D 75(6), 169 (2021). https://doi.org/10.1140/epjd/s10053-021-00181-w

    Article  ADS  Google Scholar 

  20. G. Brodin, M. Marklund, L. Stenflo, Influence of QED vacuum nonlinearities on waveguide modes. Phys. Scr. T98(1), 127 (2001). https://doi.org/10.1238/physica.topical.098a00127

    Article  ADS  Google Scholar 

  21. R. Ferraro, Testing Born–Infeld electrodynamics in waveguides. Phys. Rev. Lett. 99, 230401 (2007). https://doi.org/10.1103/PhysRevLett.99.230401

    Article  ADS  Google Scholar 

  22. V.I. Denisov, I.P. Denisova, Verifiable post-Maxwellian effect of the nonlinear electrodynamics in vacuum. Opt. Spectrosc. 90(2), 282–287 (2001). https://doi.org/10.1134/1.1351588

    Article  ADS  Google Scholar 

  23. F. Della Valle, E. Milotti, A. Ejlli, G. Messineo, L. Piemontese, G. Zavattini, U. Gastaldi, R. Pengo, G. Ruoso, First results from the new PVLAS apparatus: a new limit on vacuum magnetic birefringence. Phys. Rev. D 90, 092003 (2014). https://doi.org/10.1103/PhysRevD.90.092003

    Article  ADS  Google Scholar 

  24. F.D. Valle, G.D. Domenico, U. Gastaldi, E. Milotti, R. Pengo, G. Ruoso, G. Zavattini, Towards a direct measurement of vacuum magnetic birefringence: PVLAS achievements. Optics Commun. 283(21), 4194–4198 (2010). https://doi.org/10.1016/j.optcom.2010.06.065

    Article  ADS  MATH  Google Scholar 

  25. G. Zavattini, F.D. Valle, U. Gastaldi, G. Messineo, E. Milotti, R. Pengo, L. Piemontese, G. Ruoso, The PVLAS experiment: detecting vacuum magnetic birefringence. J. Phys.: Conf. Ser. 442, 012057 (2013). https://doi.org/10.1088/1742-6596/442/1/012057

    Article  MATH  Google Scholar 

  26. M. Bregant, G. Cantatore, S. Carusotto, R. Cimino, F. Della Valle, G. Di Domenico, U. Gastaldi, M. Karuza, V. Lozza, E. Milotti, E. Polacco, G. Raiteri, G. Ruoso, E. Zavattini, G. Zavattini, Limits on low energy photon-photon scattering from an experiment on magnetic vacuum birefringence. Phys. Rev. D 78, 032006 (2008). https://doi.org/10.1103/PhysRevD.78.032006

    Article  ADS  Google Scholar 

  27. F. Della Valle, A. Ejlli, U. Gastaldi, G. Messineo, E. Milotti, R. Pengo, G. Ruoso, G. Zavattini, The PVLAS experiment: measuring vacuum magnetic birefringence and dichroism with a birefringent Fabry–Perot cavity. Eur. Phys. J. C 76(1), 24 (2016). https://doi.org/10.1140/epjc/s10052-015-3869-8

    Article  ADS  MATH  Google Scholar 

  28. A. Cadène, P. Berceau, M. Fouché, R. Battesti, C. Rizzo, Vacuum magnetic linear birefringence using pulsed fields: status of the BMV experiment. Eur. Phys. J. D 68(1), 16 (2014). https://doi.org/10.1140/epjd/e2013-40725-9

    Article  ADS  Google Scholar 

  29. X. Fan, S. Kamioka, T. Inada, T. Yamazaki, T. Namba, S. Asai, J. Omachi, K. Yoshioka, M. Kuwata-Gonokami, A. Matsuo, K. Kawaguchi, K. Kindo, H. Nojiri, The oval experiment: a new experiment to measure vacuum magnetic birefringence using high repetition pulsed magnets. Eur. Phys. J. D 71(11), 308 (2017). https://doi.org/10.1140/epjd/e2017-80290-7

    Article  ADS  Google Scholar 

  30. K. Shibata, Long-time behavior of a nonlinear elecromagnetic wave in vacuum beyond the linear approximation. Phys. Rev. A 104, 063513 (2021). https://doi.org/10.1103/PhysRevA.104.063513

    Article  ADS  Google Scholar 

  31. J. Plebanski, Lectures on Non-linear Electrodynamics: an Extended Version of Lectures Given at the Niels Bohr Institute and NORDITA, Copenhagen, in October 1968. Copenhagen: NORDITA (1970). https://www.osti.gov/servlets/purl/4071071

  32. M. Fouché, R. Battesti, C. Rizzo, Limits on nonlinear electrodynamics. Phys. Rev. D 93, 093020 (2016). https://doi.org/10.1103/PhysRevD.93.093020

    Article  ADS  Google Scholar 

  33. R. Baier, A. Rebhan, M. Wödlinger, Light-by-light scattering in the presence of magnetic fields. Phys. Rev. D 98, 056001 (2018). https://doi.org/10.1103/PhysRevD.98.056001

    Article  ADS  MathSciNet  Google Scholar 

  34. K. Shibata, Incompatible case of perfect conductor approximation in vacuum nonlinear electromagnetism. Phys. Scr. 97(2), 025506 (2022). https://doi.org/10.1088/1402-4896/ac4c54

    Article  ADS  Google Scholar 

  35. H. Katori, V.D. Ovsiannikov, S.I. Marmo, V.G. Palchikov, Strategies for reducing the light shift in atomic clocks. Phys. Rev. A 91, 052503 (2015). https://doi.org/10.1103/PhysRevA.91.052503

    Article  ADS  Google Scholar 

  36. J.H. Durrell, A.R. Dennis, J. Jaroszynski, M.D. Ainslie, K.G.B. Palmer, Y.-H. Shi, A.M. Campbell, J. Hull, M. Strasik, E.E. Hellstrom, D.A. Cardwell, A trapped field of 17.6 t in melt-processed, bulk Gd-Ba-Cu-O reinforced with shrink-fit steel. Supercond. Sci. Technol. 27(8), 082001 (2014). https://doi.org/10.1088/0953-2048/27/8/082001

    Article  ADS  Google Scholar 

  37. E. Lundström, G. Brodin, J. Lundin, M. Marklund, R. Bingham, J. Collier, J.T. Mendonça, P. Norreys, Using high-power lasers for detection of elastic photon-photon scattering. Phys. Rev. Lett. 96, 083602 (2006). https://doi.org/10.1103/PhysRevLett.96.083602

    Article  ADS  Google Scholar 

  38. I. Kopchinskii, P. Satunin, Resonant generation of electromagnetic modes in nonlinear electrodynamics: classical approach. Phys. Rev. A 105, 013508 (2022). https://doi.org/10.1103/PhysRevA.105.013508

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author thanks Dr. M. Nakai and Dr. K. Mima for discussions on the nonlinear electromagnetic wave and its experimental application. The author quite appreciates Dr. J. Gabayno for checking the logical consistency of the text.

Author information

Authors and Affiliations

Authors

Contributions

The whole work was done only by the author.

Corresponding author

Correspondence to Kazunori Shibata.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Appendices

Appendix A: The function \({\mathcal {S}}\) appearing in Eq.(33)

In this “Appendix A,” any symbols are not related to physical meanings referred to in the main text.

Let y be an analytic function of x, we solve the following equation

$$\begin{aligned} y'^2=\left( 1-y^2\right) \left( 1-\lambda _1y-\lambda _2y^2\right) , \end{aligned}$$
(A.1)

with the initial values of \(y(0)=0\) and \(y'(0)=1\). The constants \(\lambda _1\) and \(\lambda _2\) are determined such that the second parentheses in the right-hand side does not have a root in \([-1,1]\). Such a region V is given by

$$\begin{aligned} V= {\left\{ \begin{array}{ll} \lambda _2<-\frac{\lambda _1^2}{4} &{} (\mid \lambda _1\mid \ge 2)\\ \lambda _2<\lambda _1+1 &{} (-2<\lambda _1\le 0) \\ \lambda _2<-\lambda _1+1 &{} (0<\lambda _1<2) \\ \end{array}\right. }. \end{aligned}$$
(A.2)

By defining a unique \(\varphi \) for each x by

$$\begin{aligned} x=\int _0^{\varphi }\frac{\text {d}\theta }{\sqrt{1-\lambda _1\sin \theta -\lambda _2\sin ^2\theta }}, \end{aligned}$$
(A.3)

the unique solution \(y(x)={\mathcal {S}}(x; \lambda _1, \lambda _2)\) is given by

$$\begin{aligned} {\mathcal {S}}(x; \lambda _1, \lambda _2)=\sin \varphi . \end{aligned}$$
(A.4)

The function \({\mathcal {S}}(x; \lambda _1, \lambda _2)\) can be expressed by Jacobi’s elliptic function \(\text {sn}\) as follows. For given \((\lambda _1, \lambda _2)\in V\), we define a series of parameters. Let

$$\begin{aligned} \Delta= & {} \frac{\lambda _1}{1-\lambda _2+\sqrt{(1-\lambda _2)^2-\lambda _1^2}}, \nonumber \\ k= & {} \frac{\sqrt{\lambda _1^2+4\lambda _2}}{1+\lambda _2+\sqrt{(1-\lambda _2)^2-\lambda _1^2}}, \end{aligned}$$
(A.5)

\(\Delta \) lies in \(-1<\Delta <1\) and k is a pure imaginary number or lies in [0, 1). There is unique \(x_0\) on the real axis and in the fundamental parallelogram such that

$$\begin{aligned} \text {sn}(x_0,k)=-\Delta , \ \ \text {cn}(x_0,k)=\sqrt{1-\Delta ^2}. \end{aligned}$$
(A.6)

Let

$$\begin{aligned} A=\sqrt{\frac{1-\Delta ^2}{1-k^2\Delta ^2}}, \end{aligned}$$
(A.7)

\(A>0\) holds. Using these parameters, we obtain

$$\begin{aligned} {\mathcal {S}}(x;\lambda _1,\lambda _2)=\frac{\text {sn}(Ax+x_0,k)+\Delta }{\Delta \text {sn}(Ax+x_0,k)+1}. \end{aligned}$$
(A.8)

The function \({\mathcal {S}}(x; \lambda _1, \lambda _2)\) can be regarded as a generalization of Jacobi’s elliptic function \(\text {sn}\).

Appendix B: Solution of oscillating \(\alpha \)

In the case that \(\alpha \) oscillates, its value lies between the maximum value \(\alpha _M\) and minimum value \(\alpha _m\). Note that \(0<\alpha _m<\alpha _M\). We perform a transformation of variable by

$$\begin{aligned} \alpha (T)=\frac{\alpha _M+\alpha _m}{2} +\frac{\alpha _M-\alpha _m}{2}h(T). \end{aligned}$$
(B.1)

The range of h is \(h\in [-1,1]\) and Eq. (21) is transformed into

$$\begin{aligned} h'^2=({\mathscr {A}}+{\mathscr {B}}h+{\mathscr {C}}h^2) (1-h^2), \end{aligned}$$
(B.2)

where \({\mathscr {A}}, {\mathscr {B}},\) and \({\mathscr {C}}\) are constants, especially, \({\mathscr {A}}>0\).

We define \(\varphi _0\in [0,2\pi )\) to satisfy \(\sin \varphi _0=h(0)\). If \(h(0)\ne \pm 1\), then \(h'(0)\ne 0\) and we choose \(\varphi _0\) to accord the signs of \(\cos \varphi _0\) and \(h'(0)\). Hence, \(\varphi _0\) is uniquely determined. Let \(\lambda _1=-{\mathscr {B}}/{\mathscr {A}}\) and \(\lambda _2=-{\mathscr {C}}/{\mathscr {A}}\). By defining \(T_0\) by

$$\begin{aligned} T_0=\int _0^{\varphi _0}\frac{\text {d}\theta }{\sqrt{1-\lambda _1\sin \theta -\lambda _2\sin ^2\theta }}, \end{aligned}$$
(B.3)

we obtain \({\mathcal {S}}(T_0; \lambda _1, \lambda _2)=h(0)\) and \({\mathcal {S}}'(T_0; \lambda _1, \lambda _2)=h'(0)/\sqrt{{\mathscr {A}}}\). Therefore,

$$\begin{aligned} h(T)={\mathcal {S}}(\sqrt{{\mathscr {A}}}T+T_0; \lambda _1, \lambda _2). \end{aligned}$$
(B.4)

The remaining task is to give the values of \({\mathscr {A}}, {\mathscr {B}},\) and \({\mathscr {C}}\) for each oscillating subtype. For subtype \(O_1\),

$$\begin{aligned} {\mathscr {A}}&=(c_1+c_2)c_2 (\alpha _{1-}+\alpha _{2-}-2\alpha _{1+})\nonumber \\&\quad (\alpha _{1-}+\alpha _{2-}-2\alpha _{2+}),\nonumber \\ {\mathscr {B}}&=2(c_1+c_2)c_2 (\alpha _{1-}-\alpha _{2-})\nonumber \\&\quad (\alpha _{1-}+\alpha _{2-} -\alpha _{1+}-\alpha _{2+}),\nonumber \\ {\mathscr {C}}&=(c_1+c_2)c_2 (\alpha _{1-}-\alpha _{2-})^2. \end{aligned}$$
(B.5)

For subtype \(O_2\),

$$\begin{aligned} \begin{aligned} {\mathscr {A}}&=(c_1+c_2)c_2 (\alpha _{2+}+\alpha _{1+}-2\alpha _{1-})\\&\quad (\alpha _{2+}+\alpha _{1+}-2\alpha _{2-}),\\ {\mathscr {B}}&=2(c_1+c_2)c_2 (\alpha _{2+}-\alpha _{1+})\\&\quad (\alpha _{2+}+\alpha _{1+} -\alpha _{1-}-\alpha _{2-}),\\ {\mathscr {C}}&=(c_1+c_2)c_2 (\alpha _{2+}-\alpha _{1+})^2. \end{aligned}\nonumber \\ \end{aligned}$$
(B.6)

For subtype \(O_3\),

$$\begin{aligned} \begin{aligned} {\mathscr {A}}&=(c_1+c_2)c_2 (\alpha _{2+}+\alpha _{2-}-2\alpha _{1+})\\&\quad (\alpha _{2+}+\alpha _{2-}-2\alpha _{1-}),\\ {\mathscr {B}}&=2(c_1+c_2)c_2 (\alpha _{2+}-\alpha _{2-})\\&\quad \left( \alpha _{2+}+\alpha _{2-} -\alpha _{1+}-\alpha _{1-}\right) ,\\ {\mathscr {C}}&=(c_1+c_2)c_2 (\alpha _{2+}-\alpha _{2-})^2. \end{aligned}\nonumber \\ \end{aligned}$$
(B.7)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shibata, K. Long timescale behavior of large self-modulation of electromagnetic wave caused by vacuum nonlinearity. Eur. Phys. J. D 76, 216 (2022). https://doi.org/10.1140/epjd/s10053-022-00550-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00550-z

Navigation