Skip to main content
Log in

Theoretical analysis of excitation energies and transition parameters of C-like ions

  • Regular Article – Atomic Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Relativistic configuration interaction results are presented for several C-like ions (Kr XXXI, Rb XXXII, Sr XXXIII) using the multi-configuration Dirac–Hartree–Fock (MCDHF) method. The calculations are performed in the active space approximation with the inclusion of the Breit interaction, the finite nuclear size effect and quantum electrodynamic corrections. Results for fine structure energy levels for 2s22p2, 2s2p3 and 2p4 configurations relative to the ground state are reported. The transition wavelengths, transition probabilities, line strengths and absorption oscillator strengths for electric dipole (E1) and magnetic quadrupole (M2) transitions are calculated among first 20 levels. The core-valence correlation effects are taken into account through single-double multireference expansions to increasing sets of active orbitals up to n = 7. Our calculated results are found to be very close to other available theoretical and experimental values. We hope that our results will be useful for experimentalists in identifying the fine structure levels in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated or analyzed during this study are included in this published article.]

References

  1. L.P. Carneiro, J. Puls, T.L. Hoffmann, A & A A4, 615 (2018)

    Google Scholar 

  2. Cold Spring Harb Perspect Biol 2, a002097 (2010)

  3. K. Wang, D.F. Li, H.T. Liu, X.Y. Han, B. Duan et al., Astrophys. J. Suppl. Ser. 215, 26 (2014)

    ADS  Google Scholar 

  4. Hu. Feng, Radiat. Phys. Chem. 180, 109293 (2021)

    Google Scholar 

  5. K.M. Aggarwal et al., At. Data Nucl. Data Tables 94, 323 (2008)

    ADS  Google Scholar 

  6. Y.A. Podpaly, J.D. Gillaspy, J. Reader, Yu. Ralchenko, J. Phys. B Atom. Mol. Phys. 47, 095702 (2014)

    ADS  Google Scholar 

  7. U. Feldman, J.F. Seely, A.K. Bhatia, At. Data Nucl. Data Tables 32, 350 (1985)

    Google Scholar 

  8. M.H. Chen, K.J. Reed, D.M. McWilliams, D.S. Guo et al., At. Data Nucl. Data Tables 65, 289 (1997)

    ADS  Google Scholar 

  9. U.I. Safronova, A.S. Shlyaptseva, Phys. Scr. 60, 36 (1999)

    ADS  Google Scholar 

  10. C. Beilmann, O. Postavaru, L.H. Arntzen et al., Phys. Rev. A 80, 050702 (2009)

    ADS  Google Scholar 

  11. L. Zhang, G. Jiang, L.-H. Hao, B.-L. Deng, Phys. Scr. 83, 025302 (2011)

    ADS  Google Scholar 

  12. H. Liu, G. Jiang, F. Hu, C.-K. Wang, Z.-B. Wang, J.-M. Yang, Chin. Phys. B 22, 073202 (2013)

    ADS  Google Scholar 

  13. A.K. Bhatia, J.F. Seely, U. Feldman, At. Data Nucl. Data Tables 36, 453 (1987)

    ADS  Google Scholar 

  14. A.K. Bhatia, G.A. Doschek, At. Data Nucl. Data Tables 55, 281 (1993)

    ADS  Google Scholar 

  15. B.C. Fawcett, At. Data Nucl. Data Tables 37, 367 (1987)

    ADS  Google Scholar 

  16. K.M. Aggarwal, F.P. Keenan, A.Z. Msezane, A&A 401, 377 (2003)

    ADS  Google Scholar 

  17. H.L. Zhang, D.H. Sampson, At. Data Nucl. Data Tables 63, 275 (1996)

    ADS  Google Scholar 

  18. A. Al- Modlej, R.A.B. Alraddadi, N.B. Nessib, Eur. Phys. J. Plus 133, 379 (2018)

    Google Scholar 

  19. A. Almodlej, H. Alrashed, N.B. Nessib, M.S. Dimitrijević, MNRAS 507, 3228 (2021)

    ADS  Google Scholar 

  20. N. Alwadie, A. Almodlej, N.B. Nessib, M.S. Dimitrijević, Contrib. Astron. Obs. Skalnaté Pleso 50, 86–95 (2020)

    ADS  Google Scholar 

  21. P. Jönsson, G. Gaigalas, J. Bieron, C.F. Fischer, I.P. Grant, Comput. Phys. Commun. 184, 597 (2013)

    Google Scholar 

  22. I.P. Grant, Relativistic Quantum Theory of Atoms and Molecules (Springer, New York, 2007)

    Google Scholar 

  23. C.F. Fischer et al., J. Phys. B At. Mol. Opt. Phys. 49, 182004 (2016)

    ADS  Google Scholar 

  24. I.P. Grant, N.C. Pyper, J. Phys. B Atom. Mol. Phys. 9, 5 (1976)

    Google Scholar 

  25. B.J. McKenzie, I.P. Grant, P.H. Norrington, Comput. Phys. Commun. 21, 233 (1980)

    ADS  Google Scholar 

  26. V.C. Mǿller, Ann. Phys. 406, 531 (1932)

    Google Scholar 

  27. N. Beathan, I.P. Grant, B.J. Mckenzie, S.J. Rose, Phys. Scr. 21, 423 (1980)

    ADS  Google Scholar 

  28. C.T. Chantler, T.V.B. Nguyen, J.A. Lowe, I.P. Grant, Phys. Rev. A 90, 062504 (2014)

    ADS  Google Scholar 

  29. G. Gaigalas, Z. Rudzikas, C.F. Fischer, J. Phys. B 30, 3747 (1997)

    ADS  Google Scholar 

  30. I.P. Grant, J. Phys. B 7, 1458 (1974)

    ADS  Google Scholar 

  31. K.G. Dyall, I.P. Grant, C.T. Johnson et al., Comput. Phys. Commun. 55, 425 (1989)

    ADS  Google Scholar 

  32. J. Olsen, B.O. Roos, P. Jorgensen, H.J. Aa Jensen, J. Chem. Phys. 89, 2185 (1988)

    ADS  Google Scholar 

  33. L. Sturesson, P. Jönsson, C.F. Fischer, Comput. Phys. Commun. 177, 539 (2007)

    ADS  Google Scholar 

  34. M. Bilal, R. Beerwerth, A.V. Volotka, S. Fritzsche, MNRAS 469, 4620 (2017)

    ADS  Google Scholar 

  35. N. Singh, A. Goyal, J. Electron. Spectrosc. Relat. Ph. 232, 53 (2019)

    Google Scholar 

  36. I. Khatri, A. Goyal, A.K. Singh, M. Mohan, Atoms 4, 13 (2016)

    ADS  Google Scholar 

  37. C.Y. Zhang, K. Wang, S. Ran, M. Godefroid, P. Jönsson, J. Xiao, M.F. Gu and C.Y. Chen or arXiv:2103.08891v1 [physics.atom-ph]

  38. J. Oslen, M.R. Godefroid, P.A. Jönsson et al., Phys. Rev. E 52, 4499 (1995)

    ADS  Google Scholar 

  39. P.H. Norrington, A.E. Kingston, A.W. Boone, J. Phys. B 33, 1767 (2000)

    ADS  Google Scholar 

  40. E.B. Saloman, J. Phys. Chem. Ref. Data 36, 215 (2007)

    ADS  Google Scholar 

  41. J.E. Sansonetti, J. Phys. Chem. Ref. Data 41, 013101 (2012)

    ADS  Google Scholar 

  42. C.F. Fischer, Phys. Scr. Trans. 134, 014019 (2009)

    ADS  Google Scholar 

  43. J. Ekman, M. Godefroid, H. Hartman, Atoms 2, 215 (2014)

    ADS  Google Scholar 

  44. W. Li, A.M. Amarsi, A. Populia, J. Ekman and P. Jönsson arXiv :2101.09114 [physics.atom-ph]

  45. A. Kramida, Astrophys. J. Suppl. 212(1), 11 (2014)

    ADS  Google Scholar 

Download references

Acknowledgements

Indu Khatri and Arun Goyal are thankful to University of Delhi for providing infrastructure and other facilities for this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the Paper.

Corresponding author

Correspondence to Indu Khatri.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatri, I., Goyal, A. Theoretical analysis of excitation energies and transition parameters of C-like ions. Eur. Phys. J. D 76, 206 (2022). https://doi.org/10.1140/epjd/s10053-022-00523-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00523-2

Navigation