Skip to main content
Log in

Spin chain transformations under continuous driving fields

  • Regular Article - Quantum Optics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A continuous, sinusoidal control field is used to suitably transform quantum spin chains. In particular, we are able to transform the quantum Ising chain to the quantum XY model, and the XY model to the XYZ spin chain. Our applied control field can also mitigate the effect of noise on the spin chain. We show how these spin chain transformations can be useful for quantum state transfer as well as entanglement generation.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data in a data repository. [Authors’ comment: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request].

References

  1. J.A. Kjäll, J.H. Bardarson, F. Pollmann, Many-body localization in a disordered quantum Ising chain. Phys. Rev. Lett. 113, 107204 (2014). https://doi.org/10.1103/PhysRevLett.113.107204

    Article  Google Scholar 

  2. H. Li, J. Wang, X.-J. Liu, H. Hu, Many-body localization in Ising models with random long-range interactions. Phys. Rev. A 94, 063625 (2016). https://doi.org/10.1103/PhysRevA.94.063625

    Article  Google Scholar 

  3. J. Šuntajs, J. Bonča, T. c. v. Prosen, L. Vidmar, Quantum chaos challenges many-body localization. Phys. Rev. E 102, 062144 (2020). https://doi.org/10.1103/PhysRevE.102.062144

    Article  MathSciNet  Google Scholar 

  4. R.H. McKenzie, Exact results for quantum phase transitions in random xy spin chains. Phys. Rev. Lett. 77, 4804 (1996). https://doi.org/10.1103/PhysRevLett.77.4804

    Article  Google Scholar 

  5. D.S. Fisher, Critical behavior of random transverse-field Ising spin chains. Phys. Rev. B 51, 6411 (1995). https://doi.org/10.1103/PhysRevB.51.6411

    Article  Google Scholar 

  6. T. Werlang, C. Trippe, G.A.P. Ribeiro, G. Rigolin, Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys. Rev. Lett. 105, 095702 (2010). https://doi.org/10.1103/PhysRevLett.105.095702

    Article  Google Scholar 

  7. J.K. Pachos, P.L. Knight, Quantum computation with a one-dimensional optical lattice. Phys. Rev. Lett. 91, 107902 (2003). https://doi.org/10.1103/PhysRevLett.91.107902

    Article  Google Scholar 

  8. D. Porras, J.I. Cirac, Effective quantum spin systems with trapped ions. Phys. Rev. Lett. 92, 207901 (2004). https://doi.org/10.1103/PhysRevLett.92.207901

    Article  Google Scholar 

  9. S. Haroche, J.M. Raimond, Exploring the Quantum: Atoms, Cavities, and Photons (Oxford University Press, Oxford, 2006)

    Book  MATH  Google Scholar 

  10. Y.-M. Zhu, L. Ma, Entanglement distribution in star network based on spin chain in diamond. Phys. Lett. A 382, 1651 (2018). https://doi.org/10.1016/j.physleta.2018.04.028

    Article  MathSciNet  MATH  Google Scholar 

  11. Y. Ping, B.W. Lovett, S.C. Benjamin, E.M. Gauger, Practicality of spin chain wiring in diamond quantum technologies. Phys. Rev. Lett. 110, 100503 (2013). https://doi.org/10.1103/PhysRevLett.110.100503

    Article  Google Scholar 

  12. M.C. Kuzyk, H. Wang, Scaling Phononic quantum networks of solid-state spins with closed mechanical subsystems. Phys. Rev. X 8, 041027 (2018). https://doi.org/10.1103/PhysRevX.8.041027

    Article  Google Scholar 

  13. J.B. Parkinson, D.J.J. Farnell, Springer. An Introduction to Quantum Spin Systems (2010). https://doi.org/10.1007/978-3-642-13290-2

    Article  Google Scholar 

  14. P. Cappellaro, C. Ramanathan, D.G. Cory, Simulations of information transport in spin chains. Phys. Rev. Lett. 99, 250506 (2007). https://doi.org/10.1103/PhysRevLett.99.250506

    Article  Google Scholar 

  15. Z. Li, H. Zhou, C. Ju, H. Chen, W. Zheng, D. Lu, X. Rong, C. Duan, X. Peng, J. Du, Experimental realization of a compressed quantum simulation of a 32-spin Ising chain. Phys. Rev. Lett. 112, 220501 (2014). https://doi.org/10.1103/PhysRevLett.112.220501

    Article  Google Scholar 

  16. X. Wang, A. Bayat, S.G. Schirmer, S. Bose, Robust entanglement in antiferromagnetic Heisenberg chains by single-spin optimal control. Phys. Rev. A 81, 032312 (2010). https://doi.org/10.1103/PhysRevA.81.032312

    Article  Google Scholar 

  17. I. D’Amico, B.W. Lovett, T.P. Spiller, Freezing distributed entanglement in spin chains. Phys. Rev. A 76, 030302 (2007). https://doi.org/10.1103/PhysRevA.76.030302

    Article  Google Scholar 

  18. V. Alba, F. Heidrich-Meisner, Entanglement spreading after a geometric quench in quantum spin chains. Phys. Rev. B 90, 075144 (2014). https://doi.org/10.1103/PhysRevB.90.075144

    Article  Google Scholar 

  19. V. Subrahmanyam, A. Lakshminarayan, Transport of entanglement through a Heisenberg-xy spin chain. Phys. Lett. A 349, 164 (2006). https://doi.org/10.1016/j.physleta.2005.09.021

    Article  Google Scholar 

  20. Z. Tian, P. Zhang, X.-W. Chen, Static hybrid quantum nodes: toward perfect state transfer on a photonic chip. Phys. Rev. Appl. 15, 054043 (2021). https://doi.org/10.1103/PhysRevApplied.15.054043

    Article  Google Scholar 

  21. S. Singh, B. Adhikari, S. Dutta, D. Zueco, Perfect state transfer on hypercubes and its implementation using superconducting qubits. Phys. Rev. A 102, 062609 (2020). https://doi.org/10.1103/PhysRevA.102.062609

    Article  Google Scholar 

  22. Y. Wang, F. Shuang, H. Rabitz, All possible coupling schemes in \(\mathit{XY}\) spin chains for perfect state transfer. Phys. Rev. A 84, 012307 (2011). https://doi.org/10.1103/PhysRevA.84.012307

    Article  Google Scholar 

  23. A. Kay, Perfect state transfer: beyond nearest-neighbor couplings. Phys. Rev. A 73, 032306 (2006). https://doi.org/10.1103/PhysRevA.73.032306

    Article  MathSciNet  Google Scholar 

  24. G.A. Álvarez, M. Mishkovsky, E.P. Danieli, P.R. Levstein, H.M. Pastawski, L. Frydman, Perfect state transfers by selective quantum interferences within complex spin networks. Phys. Rev. A 81, 060302 (2010). https://doi.org/10.1103/PhysRevA.81.060302

    Article  Google Scholar 

  25. A. Bayat, Arbitrary perfect state transfer in \(d\)-level spin chains. Phys. Rev. A 89, 062302 (2014). https://doi.org/10.1103/PhysRevA.89.062302

    Article  Google Scholar 

  26. G. Gualdi, V. Kostak, I. Marzoli, P. Tombesi, Perfect state transfer in long-range interacting spin chains. Phys. Rev. A 78, 022325 (2008). https://doi.org/10.1103/PhysRevA.78.022325

    Article  Google Scholar 

  27. M. Christandl, N. Datta, A. Ekert, A.J. Landahl, Perfect state transfer in quantum spin networks. Phys. Rev. Lett. 92, 187902 (2004). https://doi.org/10.1103/PhysRevLett.92.187902

    Article  Google Scholar 

  28. D. Bazhanov, I. Sivkov, V. Stepanyuk, Engineering of entanglement and spin state transfer via quantum chains of atomic spins at large separations. Sci. Rep. 8, 14118 (2018). https://doi.org/10.1038/s41598-018-32145-3

    Article  Google Scholar 

  29. G. Sadiek, B. Alkurtass, O. Aldossary, Entanglement in a time-dependent coupled \(\mathit{XY}\) spin chain in an external magnetic field. Phys. Rev. A 82, 052337 (2010). https://doi.org/10.1103/PhysRevA.82.052337

    Article  Google Scholar 

  30. J. Cui, F. Mintert, Robust control of long-distance entanglement in disordered spin chains. New J. Phys. 17, 093014 (2015). https://doi.org/10.1088/1367-2630/17/9/093014

    Article  Google Scholar 

  31. X. Zhang, B. Shao, J. Zou, Optimal control for fast and robust generation of entangled states in anisotropic Heisenberg chains. Int. J. Theor. Phys. (2017). https://doi.org/10.1007/s10773-017-3301-2

    Article  MATH  Google Scholar 

  32. S. Austin, M.Q. Khan, M. Mudassar, A.Z. Chaudhry, Continuous dynamical decoupling of spin chains: modulating the spin-environment and spin-spin interactions. Phys. Rev. A 100, 022102 (2019). https://doi.org/10.1103/PhysRevA.100.022102

    Article  Google Scholar 

  33. M. Kargarian, R. Jafari, A. Langari, Dzyaloshinskii–Moriya interaction and anisotropy effects on the entanglement of the Heisenberg model. Phys. Rev. A 79, 042319 (2009). https://doi.org/10.1103/PhysRevA.79.042319

    Article  Google Scholar 

  34. R. Jafari, M. Kargarian, A. Langari, M. Siahatgar, Phase diagram and entanglement of the Ising model with Dzyaloshinskii-Moriya interaction. Phys. Rev. B 78, 214414 (2008). https://doi.org/10.1103/PhysRevB.78.214414

    Article  Google Scholar 

  35. E. Mehran, S. Mahdavifar, R. Jafari, Induced effects of the Dzyaloshinskii–Moriya interaction on the thermal entanglement in spin-1/2 Heisenberg chains. Phys. Rev. A 89, 042306 (2014). https://doi.org/10.1103/PhysRevA.89.042306

    Article  Google Scholar 

  36. A. Irfan, S. F. A. Hashmi, S. N. Zaidi, M. U. Baig, and A. Z. Chaudhry, Continuous dynamical decoupling of spin chains: inducing two-qubit interactions to generate perfect entanglement ( 2020). arXiv:2012.03873 [quant-ph]

  37. A.Z. Chaudhry, J. Gong, Decoherence control: universal protection of two-qubit states and two-qubit gates using continuous driving fields. Phys. Rev. A 85, 012315 (2012). https://doi.org/10.1103/PhysRevA.85.012315

    Article  Google Scholar 

  38. L. Viola, E. Knill, S. Lloyd, Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82, 2417 (1999). https://doi.org/10.1103/PhysRevLett.82.2417

    Article  MathSciNet  MATH  Google Scholar 

  39. F. F. Fanchini, R. d. J. Napolitano, Continuous dynamical protection of two-qubit entanglement from uncorrelated dephasing, bit flipping, and dissipation. Phys. Rev. A 76, 062306 (2007). https://doi.org/10.1103/PhysRevA.76.062306

  40. A.Z. Chaudhry, J. Gong, Amplification and suppression of system-bath-correlation effects in an open many-body system. Phys. Rev. A 87, 012129 (2013). https://doi.org/10.1103/PhysRevA.87.012129

  41. F. F. Fanchini, J. E. M. Hornos, R. d. J. Napolitano, Continuously decoupling single-qubit operations from a perturbing thermal bath of scalar bosons. Phys. Rev. A 75, 022329 (2007). https://doi.org/10.1103/PhysRevA.75.022329

  42. A.Z. Chaudhry, J. Gong, Protecting and enhancing spin squeezing via continuous dynamical decoupling. Phys. Rev. A 86, 012311 (2012). https://doi.org/10.1103/PhysRevA.86.012311

    Article  Google Scholar 

  43. W. Huang, Y.-L. Zhang, C.-L. Zou, X.-B. Zou, G.-C. Guo, Two-axis spin squeezing of two-component Bose-Einstein condensates via continuous driving. Phys. Rev. A 91, 043642 (2015). https://doi.org/10.1103/PhysRevA.91.043642

    Article  Google Scholar 

  44. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover Publications, Mineola, 1972)

    MATH  Google Scholar 

  45. K. Jacobs, Stochastic Processes for Physicists: Understanding Noisy Systems (Cambridge University Press, Cambridge, 2010). https://doi.org/10.1017/CBO9780511815980

    Book  MATH  Google Scholar 

  46. K.R.K. Rao, T.S. Mahesh, A. Kumar, Efficient simulation of unitary operators by combining two numerical algorithms: An NMR simulation of the mirror-inversion propagator of an \(xy\) spin chain. Phys. Rev. A 90, 012306 (2014). https://doi.org/10.1103/PhysRevA.90.012306

    Article  Google Scholar 

  47. Z.-H. Wang, W. Zhang, A.M. Tyryshkin, S.A. Lyon, J.W. Ager, E.E. Haller, V.V. Dobrovitski, Effect of pulse error accumulation on dynamical decoupling of the electron spins of phosphorus donors in silicon. Phys. Rev. B 85, 085206 (2012). https://doi.org/10.1103/PhysRevB.85.085206

    Article  Google Scholar 

  48. Y.C. Liu, Z.F. Xu, G.R. Jin, L. You, Spin squeezing: Transforming one-axis twisting into two-axis twisting. Phys. Rev. Lett. 107, 013601 (2011). https://doi.org/10.1103/PhysRevLett.107.013601

    Article  Google Scholar 

  49. C. Shen, L.-M. Duan, Efficient spin squeezing with optimized pulse sequences. Phys. Rev. A 87, 051801 (2013). https://doi.org/10.1103/PhysRevA.87.051801

    Article  Google Scholar 

  50. M.H. Schleier-Smith, I.D. Leroux, V. Vuletić, Squeezing the collective spin of a dilute atomic ensemble by cavity feedback. Phys. Rev. A 81, 021804 (2010). https://doi.org/10.1103/PhysRevA.81.021804

    Article  Google Scholar 

  51. I.D. Leroux, M.H. Schleier-Smith, V. Vuletić, Implementation of cavity squeezing of a collective atomic spin. Phys. Rev. Lett. 104, 073602 (2010). https://doi.org/10.1103/PhysRevLett.104.073602

    Article  Google Scholar 

  52. D. Wanish, S. Fritzsche, Driven spin chains as high-quality quantum routers. Phys. Rev. A 102, 032624 (2020). https://doi.org/10.1103/PhysRevA.102.032624

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AZC came up with the basic idea behind this work. HS carried out the calculations and plotted the graphs. Both authors contributed towards the writing of the manuscript.

Corresponding author

Correspondence to Adam Zaman Chaudhry.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soomro, H., Chaudhry, A.Z. Spin chain transformations under continuous driving fields. Eur. Phys. J. D 76, 180 (2022). https://doi.org/10.1140/epjd/s10053-022-00509-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00509-0

Navigation